WOLF OF WALL STREET- USING RESERVOIR ENGINEERING INSIGHT TO GUIDE OIL AND GAS INVESTMENT DECISIONS

David M. Anderson, Director
Anderson Thompson – Who are we?

Anderson Thompson is a team of reservoir engineers, geoscientists, and hydraulic-fracturing specialists, whose mission is to support your efforts to improve the performance and profitability of your unconventional assets through practical and innovative field-development optimization

- We partner with oil and gas operators and investors ranging from start-ups to multinationals
- Our team has world-class expertise in unconventional reservoir characterization and production forecasting
- We have broad international basin experience with specialization in the Permian, Eagle Ford, Bakken, Marcellus, and Montney plays
Objectives of this Presentation-

• Learn how to critically evaluate investor and technical presentations and identify the most common fallacies

• See through the “noise” and make better sense of publically available oil and gas data and market research

• Learn how to find hidden opportunities and avoid costly pitfalls when evaluating assets and deciding where to invest

• Understand how reservoir value translates into market value (or how it sometimes doesn’t)
Topics of Discussion – Reservoir Engineering Insights

• Robbing PDP to pay PUD
 ➢ Bakken/Three Forks Example

• If you torture data enough it will confess to anything
 ➢ The peak rate fallacy
 ➢ False causality
 ➢ Mean or median?

• Unrealized potential- the diamond in the rough
 ➢ Identifying upside in assets with existing production
 ➢ Identifying good investment opportunities
Reservoir Engineering
Insight #1-
Robbing PDP to pay PUD
Production Forecast – based on decline curve

Mathistad 2-35H Middle Bakken Well

Is this a realistic production forecast?

40-year EUR = 425 Mbbl
constant ‘b-value’ of 2.07

Cross Section View of Mathistad Wells

Mathistad 2-35H MB
Completed June 2009

Mathistad 1-35H TFS
FPDate 7-4-08

Plan View of Mathistad Wells

Bakken and Three Forks wells have unbounded lateral drainage

Mathistad 2-35MB Updated Production
Decline Curve Analysis
b-value = 2.07
40-year EUR = 425 Mbbl
Decline Curves 101

The Hyperbolic Decline Curve

\[q = \frac{q_i}{(1 + bD_i t)^{1/b}} \]

- **Initial production rate**
- **Hyperbolic exponent**
- **Initial decline rate**

<table>
<thead>
<tr>
<th>b value</th>
<th>Reservoir Drive Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (exponential)</td>
<td>Single phase liquid expansion (oil above bubble point), single phase gas expansion at high pressure, water or gas breakthrough in an oil well</td>
</tr>
<tr>
<td>0.1 – 0.4</td>
<td>Solution gas drive</td>
</tr>
<tr>
<td>0.4 – 0.5</td>
<td>Single phase gas expansion</td>
</tr>
<tr>
<td>0.5</td>
<td>Effective edge water drive</td>
</tr>
<tr>
<td>0.5 – 1</td>
<td>Layered reservoirs</td>
</tr>
<tr>
<td>1 – 1.5</td>
<td>Transitional flow in multi-stage hz wells frac’d reservoirs</td>
</tr>
<tr>
<td>2</td>
<td>Linear flow</td>
</tr>
</tbody>
</table>
Forecast Comparison - DCA vs. Model Based

Decline Curve Analysis
b-value = 2.07
40-year EUR = 425 Mbbl

1320 ft well spacing case
40-year EUR = 412 Mbbl

Model supports DCA assuming 320 acre drainage
Operator’s Drilling Program

First Full Pattern 160-Acre Development Pilot

- 14 wells drilled in one 1280 (Mar 2013-Mar 2014)
- 4 MB, 3 TF1, 4 TF2, 3 TF3
- 660’ inter-well spacing between same-zone wells

Reservoir Models - Base Case vs. Infill

320 acre drainage area per well

1320 ft

160 acre drainage area per well

660 ft
Production Forecasts- Base Case vs. Infill
Production Forecasts- Base Case vs. Infill

Decline Curve Analysis
b-value = 2.07
40-year EUR = 425 Mbbl
Production Forecasts- Base Case vs. Infill

Decline Curve Analysis
b-value = 2.07
40-year EUR = 425 Mbbl

1320 ft well spacing case
40-year EUR = 412 Mbbl
Production Forecasts - Base Case vs. Infill

Decline Curve Analysis
b-value = 2.07
40-year EUR = 425 Mbbl

1320 ft well spacing case
40-year EUR = 412 Mbbl

660 ft well spacing case
40-year EUR = 238 Mbbl
Production Forecasts- Base Case vs. Infill

660 ft well spacing
160 acre case

1320 ft well spacing
320 acre case
Robbing PDP to pay PUD - Summary

- Production decline changes when infill wells are drilled!
- DCA-based type curves are usually not adjusted to account for the impact of infill drilling programs
- The optimum drilling density in a field development scenario often requires “robbing PDP to pay PUD!”

![Graph showing NPV and EUR/Well vs Wells/DSU]

- **NPV** ($MM)
- **EUR/Well** (Mbbl)
- **Wells/DSU**
- EUR/well begins to drop due to infill drilling
- Optimum drilling density for NPV
Reservoir Engineering Insight #2-
If you torture data enough, it will confess to anything
The Fallacy of the 30 day IP (or peak rate)

1 Calendar Month Np vs 5 Year Np

All producing oil wells in Alberta since 1987-
- Wells with high initial productivity often do not perform well in the long-term (and vice-versa)

Why??
Initial production rates are DOMINATED by operations during the first few weeks- long term reservoir capability is usually MASKED
The Fallacy of the 30 day IP (or peak rate)

3 Calendar Month Np vs 5 Year Np

Correlation is better for 90 day (3 month) rate but still poor $R^2<0.5$
Calendar Time IP or Producing Time IP?

Calendar Time IP is biased towards wells with low downtime and/or high drawdown

Producing Time IP is biased towards wells with high downtime and/or low drawdown

Courtesy of Bertrand Groulx
Correlating Early Production Indicators to EUR

4 Play Analysis of the Correlation of Production Measures to EUR using VISAGE

<table>
<thead>
<tr>
<th>VISAGE</th>
<th>Montney (Gas)</th>
<th>Cardium (Oil)</th>
<th>Viking (Oil)</th>
<th>Bakken (Oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Set 1</td>
<td>Data Set 2</td>
<td>Data Set 1</td>
<td>Data Set 2</td>
</tr>
<tr>
<td></td>
<td>Correlation %</td>
<td>Well Count</td>
<td>Correlation %</td>
<td>Well Count</td>
</tr>
<tr>
<td>PD Rate (month 1)</td>
<td>10.6</td>
<td>585</td>
<td>18.9</td>
<td>227</td>
</tr>
<tr>
<td>PD Rate (month 1-2)</td>
<td>21.0</td>
<td>584</td>
<td>29.9</td>
<td>226</td>
</tr>
<tr>
<td>PD Rate (month 1-3)</td>
<td>31.2</td>
<td>583</td>
<td>36.7</td>
<td>225</td>
</tr>
<tr>
<td>Peak</td>
<td>60.0</td>
<td>585</td>
<td>56.2</td>
<td>227</td>
</tr>
<tr>
<td>IP30</td>
<td>32.6</td>
<td>585</td>
<td>39.3</td>
<td>227</td>
</tr>
<tr>
<td>IP60</td>
<td>42.7</td>
<td>585</td>
<td>45.2</td>
<td>227</td>
</tr>
<tr>
<td>IP90</td>
<td>49.2</td>
<td>585</td>
<td>49.9</td>
<td>227</td>
</tr>
<tr>
<td>IP180</td>
<td>60.8</td>
<td>576</td>
<td>62.0</td>
<td>227</td>
</tr>
<tr>
<td>IP365</td>
<td>72.4</td>
<td>576</td>
<td>74.9</td>
<td>227</td>
</tr>
<tr>
<td>3 Month Cum</td>
<td>23.2</td>
<td>585</td>
<td>19.4</td>
<td>227</td>
</tr>
<tr>
<td>6 Month Cum</td>
<td>49.3</td>
<td>585</td>
<td>45.1</td>
<td>227</td>
</tr>
<tr>
<td>12 Month Cum</td>
<td>67.1</td>
<td>523</td>
<td>67.0</td>
<td>227</td>
</tr>
<tr>
<td>18 Month Cum</td>
<td>75.4</td>
<td>418</td>
<td>76.1</td>
<td>227</td>
</tr>
<tr>
<td>24 Month Cum</td>
<td>79.7</td>
<td>377</td>
<td>81.6</td>
<td>227</td>
</tr>
<tr>
<td>30 Month Cum</td>
<td>83.5</td>
<td>367</td>
<td>85.1</td>
<td>227</td>
</tr>
<tr>
<td>36 Month Cum</td>
<td>87.5</td>
<td>327</td>
<td>87.5</td>
<td>227</td>
</tr>
<tr>
<td>3 Month Cum</td>
<td>16.4</td>
<td>585</td>
<td>8.9</td>
<td>227</td>
</tr>
<tr>
<td>6 Month Cum</td>
<td>40.3</td>
<td>585</td>
<td>30.5</td>
<td>227</td>
</tr>
<tr>
<td>12 Month Cum</td>
<td>59.5</td>
<td>523</td>
<td>56.2</td>
<td>227</td>
</tr>
<tr>
<td>18 Month Cum</td>
<td>71.5</td>
<td>474</td>
<td>70.5</td>
<td>227</td>
</tr>
<tr>
<td>24 Month Cum</td>
<td>77.5</td>
<td>377</td>
<td>78.4</td>
<td>227</td>
</tr>
<tr>
<td>30 Month Cum</td>
<td>82.0</td>
<td>367</td>
<td>83.5</td>
<td>227</td>
</tr>
<tr>
<td>36 Month Cum</td>
<td>86.4</td>
<td>327</td>
<td>86.4</td>
<td>227</td>
</tr>
</tbody>
</table>

Legend
- Green = Correlation between 70% and 100%
- Yellow = Correlation between 50% and 70%
- Red = Correlation between 30% and 50%
- Grey = Correlation between 0% and 50%

Data Set 1 = wells with >80% correlation on Modified Duong fits for both “a” and “m” and >6 months production after peak

Data Set 2 = subset of Data Set 1 where all wells have >=36 months production

Note: Sample sets include only horizontal wells.

EUR calculation based on 240 month forecast using Modified Duong auto-forecast up to boundary dominated flow BDF, then transitioning to Arps for remainder of forecast.

Gas wells (Montney) used 60 months to BDF and a b value of 0.5 for Arps

Oil wells (Cardium, Viking and Bakken) used 48 months to BDF and a b value of 0.5 for Arps

Courtesy of Bertrand Groulx
Example of Peak Rate Fallacy

Which is the better well?

Well 1
Well 2
Use Rate Transient Analysis to Reveal the Truth!

Linear Flow Specialized Plot Analysis

Function of rates AND flowing pressures
Flatter = better
Well 2 is the better well!
RTA (reservoir model) Forecasts

Production update- confirms early predictions
False Causality

• Belief that correlation proves causation

• Examples-
 ➢ Sleeping with one’s shoes on is strongly correlated with waking up with a headache. Therefore sleeping with shoes on causes headaches
 ➢ As ice cream sales increase, the rate of drowning deaths increases sharply. Therefore, ice cream consumption causes drowning
False Causality in Oil and Gas Data

- Proppant “X” is correlated with better well performance in the Eagle Ford. Therefore using proppant X will result in better well performance.

![Bar chart showing correlation between average peak rate and proppant type.

- Reservoir engineering insight- Proppant “X” was used by a single operator with the best land position in the EF; Operator also known for flowing back wells unchoked (to maximize 30-90 day production).
False Causality in Oil and Gas Data

• Frac fluid additive “X” is correlated to better well performance. Therefore using additive “X” will result in better well performance

• Reservoir engineering insight- Frac fluid additive “X” was only used by in wells stimulated by oilfield service company “Y” which has a larger fleet, more horsepower and tends to pump larger jobs
What Really Drives Well Performance?

Operations
- Open vs choked flow
- Shut-ins
- Flowing pressure profile
- Artificial lift
- Separator pressure/ temp

Reservoir/Fluid
- Reservoir pressure
- Net pay
- Porosity
- S_w
- Young’s modulus
- Poisson’s ratio
- Natural fractures
- Stress profile
- Permeability
- Fluid compressibility
- Pore compressibility
- Fluid viscosity
- Gas solubility
- Gas gravity
- Oil API gravity
- Capillary pressure

Completion/Wellbore
- Lateral length
- Landing depth
- Tubing/casing size/depth
- Number of entry points
- Missed entry points
- Completion type
- Proppant volume
- Proppant type
- Fluid volume
- Fluid type
- Treatment schedule
- Well spacing

Just one of many variables that influence well performance
Eagle Ford Well Performance – Sensitivity Analysis

0.0001 < k < 0.01 md

1 year Np (Mstb)

Dominant - permeability, thickness, fracture length, number of stages

Second Order - fracture conductivity (related to proppant type)
False Causality

• Beware of “sweeping conclusions of causality” that are based on two dimensional correlations

• The vast majority of well performance variance results from differences in the rock and reservoir fluids

• Reservoir engineering insight will find the true underlying performance drivers that are specific to the play of interest
Statistics 101 - Mean or Median?

Cumulative Distribution of EURs in Bone Spring, Lea County

Median (P50) EUR = 150 Mstb
Mean EUR = 205 Mstb
Mean vs Median Type Well Curves

Type Wells – Tight Gas Field, Wyoming

Mean (Average)
P50
Mean vs Median Type Well Curves- Impact on EUR

Type Wells – Tight Gas Field, Wyoming

- Average – 7.5 bcf
- P50 – 6 bcf

Type Well based on average is 25% better
Mean or Median?

- Median is a better indicator of how a new well is likely to perform
- Mean is the average - in a log normal distribution, mean is higher than the median
- E&Ps that use type curves based on mean are likely overstating the value of undrilled acreage, especially for small drilling programs
- Type well curves created using limited statistical samples are unreliable
Reservoir Engineering Insight #3-
Unrealized potential- the diamond in the rough
Using Reservoir Insights to Find Opportunity

• How can reservoir engineering insight be used to identify underperforming assets?

• How closely can value created in the reservoir be correlated to shareholder and market value?
Example 1 - Insufficient Pipeline Capacity

- Drop in production rate
- Increase in decline rate
- No loss in productivity!
- Model – OGIP = 24 bcf
- Recoverable Gas – 18 bcf

Increasing back pressure due to reduced pipeline capacity

Rectangular Reservoir Model
Pressure History Match

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Synthetic Pressure</td>
</tr>
</tbody>
</table>

Simulated and measured bhp (psia)

Gas Rate (MMscfd)

Time, days

Andersen Thompson
Example 1- Do Nothing or Remove Back Pressure

Based on current conditions:

EUR = 3 bcf

EUR = 18 bcf if back pressure is removed!
Example 2 - Productivity Loss

Which well is underperforming?

Gas Well 1

Gas Well 2
The Power of the Diagnostic RTA Plot

Gas Well 1-
Continuous linear flow response – healthy well

Gas Well 2-
Discontinuity, sudden loss of productivity after 2 months on-stream
Identifying Common Well Performance Issues

<table>
<thead>
<tr>
<th>Issues</th>
<th>Surface</th>
<th>Wellbore</th>
<th>Completion / Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pump efficiency</td>
<td>Mechanical blockage</td>
<td>Frac face skin</td>
<td></td>
</tr>
<tr>
<td>Insufficient compression</td>
<td>(Unmilled ball seats, parted casing, proppant bridge etc)</td>
<td>Low frac conductivity</td>
<td></td>
</tr>
<tr>
<td>Insufficient pipeline</td>
<td>Liquid loading</td>
<td>Fines migration</td>
<td></td>
</tr>
<tr>
<td>capacity</td>
<td>Buildup of precipitates</td>
<td>Stress dependent flow capacity</td>
<td></td>
</tr>
<tr>
<td>Chokes / restrictions</td>
<td>Underperforming artificial lift</td>
<td>Phase trapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water influx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td>Drop in rate</td>
<td>Inconsistent flowing pressure response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase in decline rate</td>
<td>High measured bhp</td>
<td></td>
</tr>
<tr>
<td>How to diagnose it</td>
<td>Look at production data</td>
<td>Noisy production data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use RTA / modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipeline modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>Easy</td>
<td>Use RTA / modeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low risk</td>
<td>Downhole camera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate Difficulty</td>
<td>Measure bhp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difficult</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anderson Thompson
Finding Upside in Production

• Choose an asset where bulk of the wells are underperforming against the reservoir due to surface or wellbore issues. Find-
 - Potential to implement field wide artificial lift or compression
 - Potential to lower tubing in vertical gas wells
 - Potential for optimizing surface facilities (line looping)
Translating Reservoir Value into Market Value

• Who are the most successful oil companies?
• Why are they successful?
• How are value and success measured?
 ➢ IP - 30 day or 365 day?
 ➢ Time to payout and cash flow
 ➢ NPV and IRR
 ➢ Repeatability and scalability with low risk

Optimized reservoir management isn’t always rewarded in the market, but it will almost always provide the best NPV for the asset
Strategies that Oil Companies Use

<table>
<thead>
<tr>
<th>Short Term</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Maximize IP</td>
<td>- Maximize ultimate recovery of the entire asset</td>
</tr>
<tr>
<td>- Minimize D&C cost</td>
<td>- Focus on integration of disciplines</td>
</tr>
<tr>
<td>- Find the sweet spot</td>
<td>- Focus on understanding the reservoir</td>
</tr>
<tr>
<td>- Pursue aggressive completion and treatment designs</td>
<td>- Focus on controlled optimization</td>
</tr>
<tr>
<td>- Value measured using time to payout</td>
<td>- Value measured using NPV and IRR</td>
</tr>
<tr>
<td>- Value measured well by well</td>
<td>- Value measured at the asset level</td>
</tr>
<tr>
<td>- Short term strategies are required to put startups and juniors on the map</td>
<td>- Long term strategies are boring and often go unnoticed</td>
</tr>
<tr>
<td>- Short term strategies are not easily repeatable or scalable</td>
<td>- Operators employing long term strategies are usually successful across multiple plays/basins</td>
</tr>
<tr>
<td>- Companies with successful short term strategies are often overvalued by the stock market</td>
<td>- Small companies with successful long term strategies are often undervalued by the stock market</td>
</tr>
<tr>
<td></td>
<td>- Every one of the worlds top 25 oil companies employs long term strategies</td>
</tr>
</tbody>
</table>
Example of Opposing Oilfield Strategies - Montney

• Operator A

- Minimizes D&C cost by avoiding directional drilling and using uncemented liners
- Drills toe up through multiple benches to maximize total reservoir exposure; contributes to high IP and better liquids recovery
- Large proppant volumes per stage maximizes frac area and connection to reservoir; contributes to high IP
- Flows back wells unchoked to maximize IP and minimize payout time
Example of Opposing Oilfield Strategies- Montney

• Operator B

- Spends more on D&C; drills directionally to stay in zone, uses cemented liner with pinpoint completion technology
- Uses high stage density with lower proppant volumes per stage to maximize recovery efficiency in zone and along the lateral
- Flows back wells on choke to manage liquids recovery and maintain reservoir pressure above dew point for as long as possible
Example of Opposing Oilfield Strategies - Montney

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator A (Short Term)</td>
<td>- Faster payout on deployed capital</td>
<td>- Inflated shareholder value</td>
</tr>
<tr>
<td></td>
<td>- Market recognition, ability to obtain funding</td>
<td>- Risk of loss of repeatability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Loss of future drilling inventory</td>
</tr>
<tr>
<td>Operator B (Long Term)</td>
<td>- Understated shareholder value</td>
<td>- Slower payout on deployed capital</td>
</tr>
<tr>
<td></td>
<td>- Repeatable and scalable</td>
<td>- Unimpressive IP</td>
</tr>
<tr>
<td></td>
<td>- Better long term performance and profitability</td>
<td></td>
</tr>
</tbody>
</table>
Final Thoughts

• Reservoir engineering insight can be useful in the investment community
 - Helps identify red flags
 - Helps filter out noise; focus on what is important
 - Identifies underperforming assets
 - Helps identify undervalued (or overvalued) companies

• Successful operators and management teams:
 - Are very clear on how they measure value
 - Can execute a repeatable and scalable development strategy
 - Don’t have a “silver bullet” but rather, perform to a consistent level of competence across all disciplines in the value chain
Thank-you!

Questions?