

Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs

Tom BLASINGAME Petroleum Engineering | Texas A&M University College Station, TX 77843-3116 (USA) +1.979.845.2292 | t-blasingame@tamu.edu

Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs

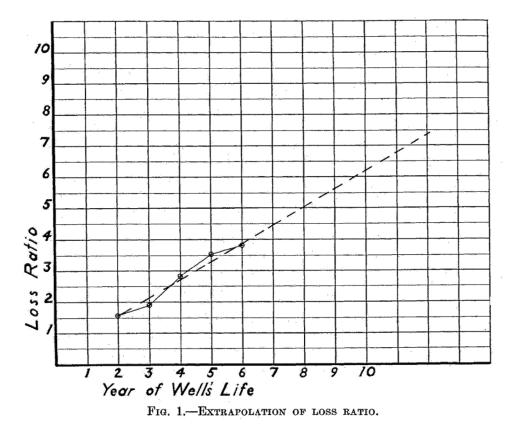
Historical Aspects of Rate and Pressure Analysis

Historical Aspects: ANCIENT History (Johnson/Bollens)

Loss Ratio: (D-parameter)

$$\frac{1}{D} \equiv -\frac{q}{dq/dt} \equiv -\frac{dq}{dQ}$$

Derivative of Loss Ratio: (b-factor)


$$b \equiv \frac{d}{dt} \left[\frac{1}{D} \right] \equiv -\frac{d}{dt} \left[\frac{q}{dq/dt} \right] \equiv q \frac{d}{dQ} \left[\frac{1}{D} \right]$$

Example:

Year	y	Δy	r	Δτ	Average, Δr	r from Average	r from Graph
1	5700				i i		
2	3500	2200	1.51				
3	2300	1200	1.92	0.33			
4	1700	600	2.84	0.92			
5	1325	375	3.54	0.70			
6	1050	375	3.82	0.28			
7			-		0.56	4.38	4.4
8						4.94	5.0
9						5.50	5.6

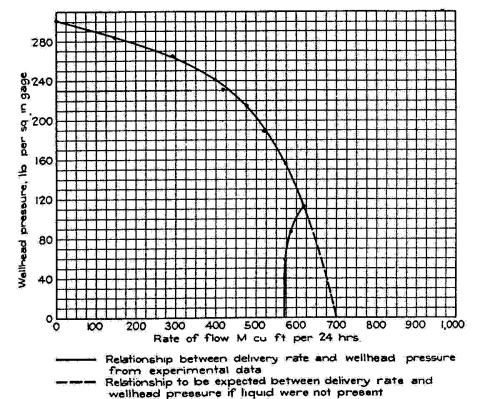
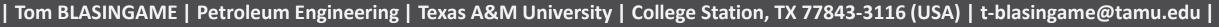
Historical Analysis: Johnson/Bollens (1928)

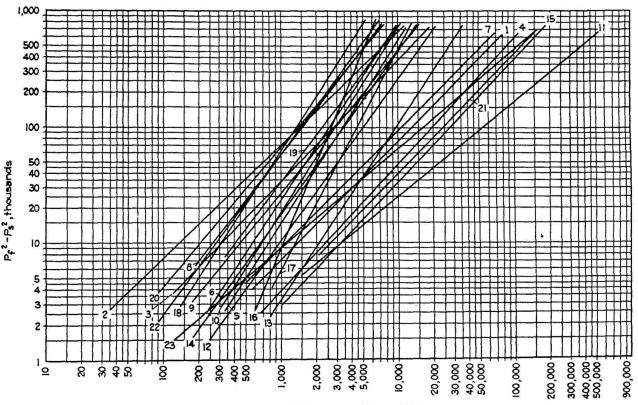
- Johnson and Bollens proposed a plot of the *loss ratio* versus *time*.
- A linear plot of *loss ratio* versus *time* implies that b(t) = constant (hyperbolic decline).
- A constant *loss ratio* versus *time* implies that b(t) = 0 (exponential decline).

Early Example — Johnson/Bollens (1928)

Johnson, R.H. and Bollens, A.L.: "The Loss Ratio Method of Extrapolating Oil Well Decline Curves," Trans. AIME (1927) 77, 771.

Historical Aspects: ANCIENT History (Rawlins and Schellhardt)


FIGURE 1.—Effect of one kind of liquid condition in a gas well on delivery capacities

First "IPR"-type curve.

Historical Analysis: Rawlins and Schellhardt (1935)

- This was the first p_{wf} vs. q_g plot (inflow performance relationship IPR).
- Plots of $\log[p_{ava}^2 p_{wf}^2]$ versus q_q the so-called back-pressure plot.
- The trends on the $\log[p_{avg}^2 p_{wf}^2]$ versus q_g plots vary significantly diverse properties and practices.

Rate of flow, M cu. ft. per 24 hrs.

FIGURD 31 .- Results of back-pressure tests on 23 gas wells in one field

Example "Back-Pressure" Tests (All from the Same Field)

Rawlins, E. L. and M. A. Schellhardt: Backpressure Data on Natural Gas Wells and Their Application To Production Practices, Monograph 7, U.S. Bureau of Mines, Washington, DC, (1936).

Historical Aspects: ANCIENT History (Jones)

231

Jones, P.J.: "Estimating Oil Reserves from Production-Decline Rates," Oil and Gas Jour. (Aug. 20, 1942) 43.

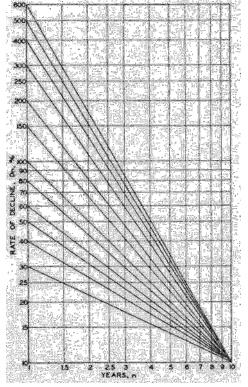


Fig. 37 — Variable rate of decline.

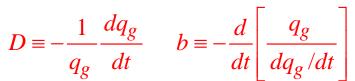
Historical Analysis: Jones (1942)

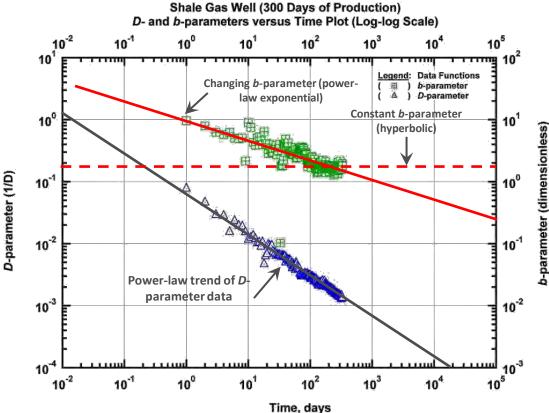
- Analysis of Decline Curves
- By J. J. ARPS,* MEMBER A.I.M.E. (Houston Meeting, May 1944)

J. J. ARPS

P. J. Jones,²¹ in 1942, suggested for wells declining at variable rates an approximation whereby the decline-time relationship follows a straight line on log-log paper. This corresponds to an equation:

 $\log D = \log D_0 - m \log t$

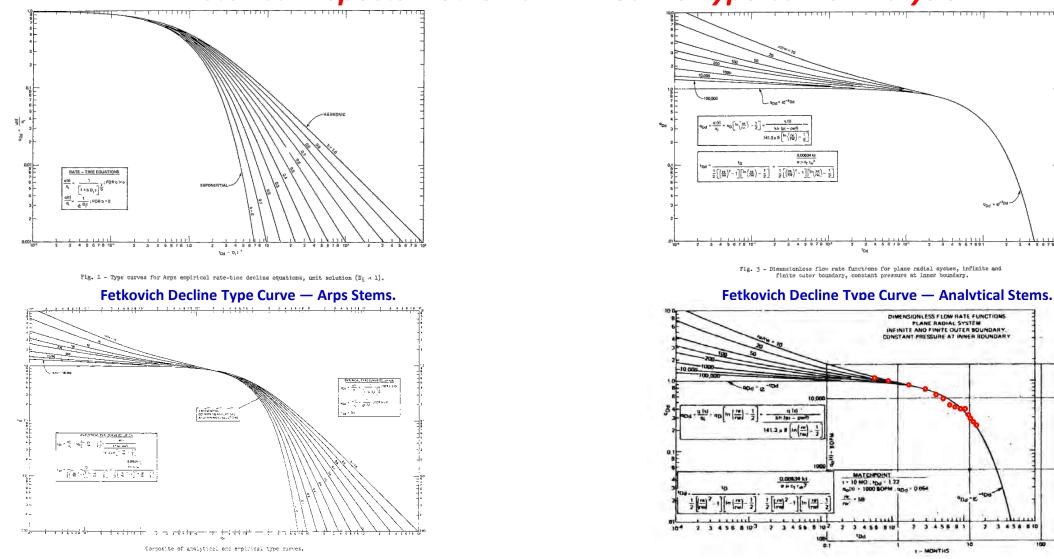

in which D_o designates the initial decline and m is a positive constant. Integration of this relationship will lead to a rate-time equation of the general form:


 $P = P_o e^{\frac{D_o t^{1-m}}{100(m-1)}}$

It may be noted that this relationship will not straighten out on semilog or log-log paper, but shows the interesting characteristic of straightening out when the log-log of the production rate is plotted against the log of the time.

```
Power-Law Exponential: (2008)
```

 $q = \hat{q}_i \exp[-D_{\infty} t - \hat{D}_i t^n]$

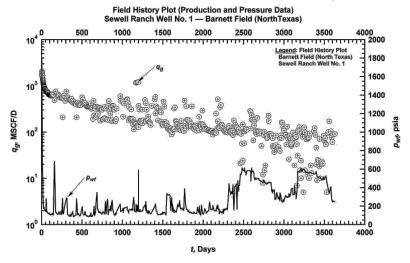


- Log[decline rate] versus log [time] validates the power-law exponential concept.
- Jones saw that this function had relevance, but did not demonstrate the approach.
- Interesting that this was 66 years before the PLE relation was observed.

Fetkovich Decline Type Curve — Example Data Case (Well 13 — SPE 004629).

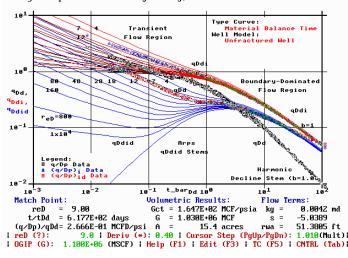
Historical Aspects: Fetkovich — Decline Type Curve Analysis

Fetkovich Decline Type Curve — Composite Curve (original curve).

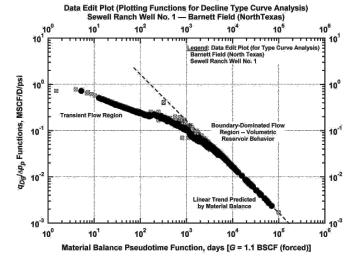

7

~1998.04.01

Creator: T.A. Blasingame

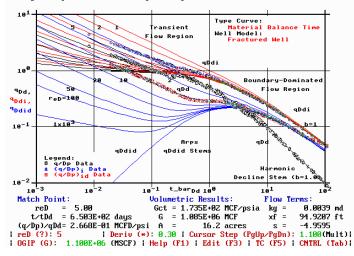

Created:

Historical Aspects: Blasingame — Rate Transient Analysis



"History Plot" — Gas rate and computed bottomhole pressures.

Well Id: Sewell Ranch Inc. #1 Analyst: Dept. of Petroleum Engineering,TAMU



"WPA Plot" — (original RTA) Unfractured well model.

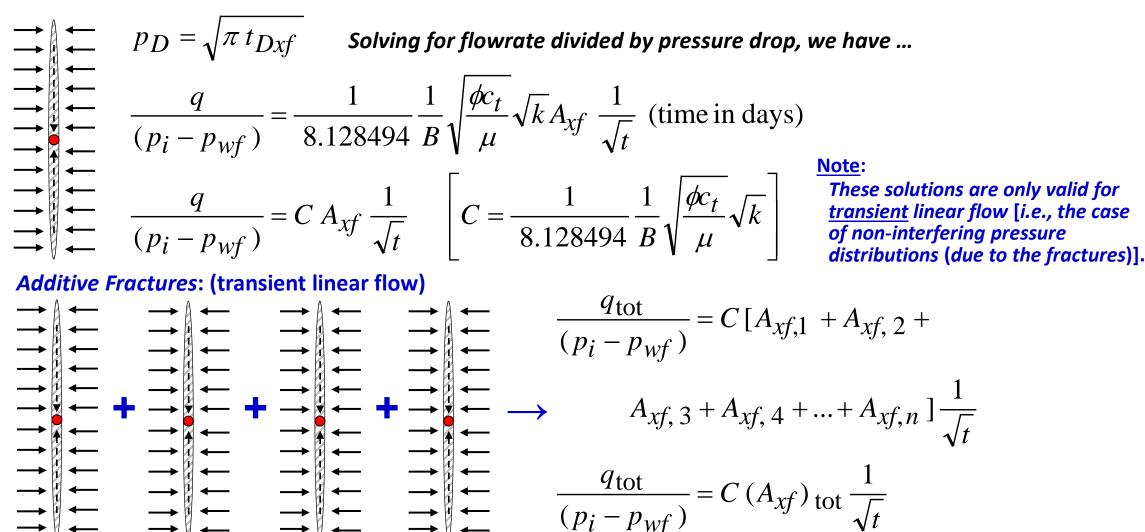
"Edit Plot" — Gas productivity Index and gas material balance pseudotime.

Well Id: Sewell Ranch Inc. #1 Analyst: Dept. of Petroleum Engineering,TAMU

"WPA Plot" — (original RTA) Fractured well model (infinite conductivity).

Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs

Linear Flow Plots [Please don't call these RTA]

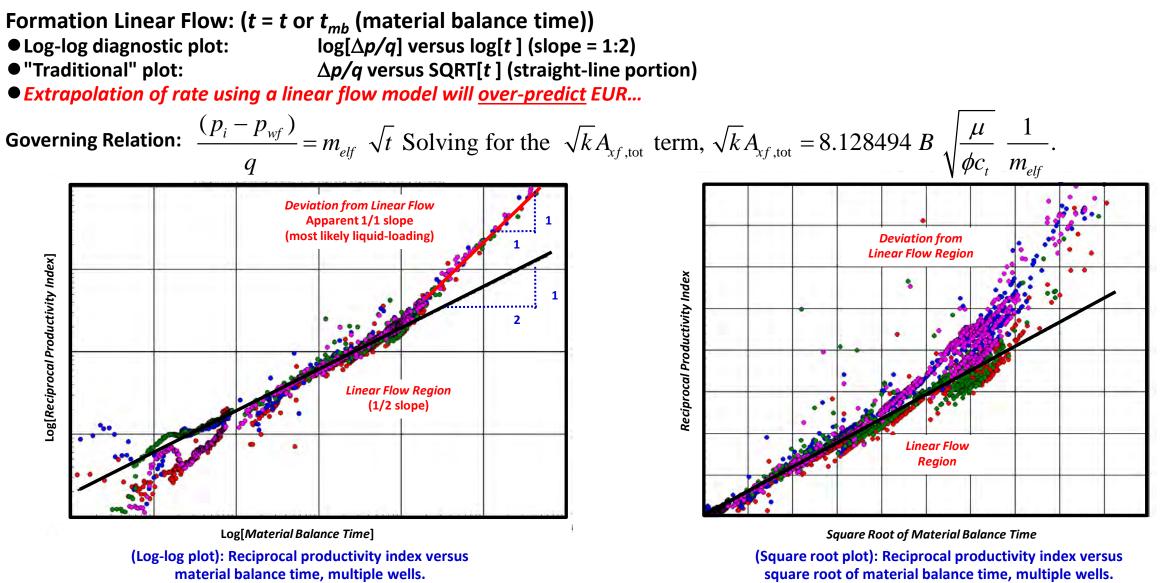


Specialized Time-Rate Analysis — Linear Flow Concepts

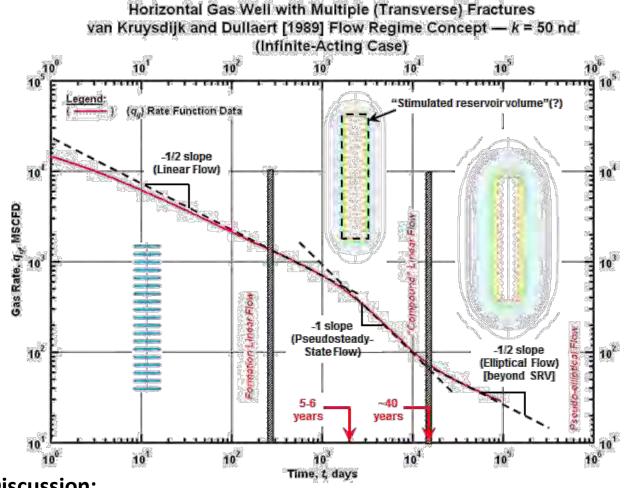
Creator: T.A. Blasingame Created: ~2017

9

Solution for a Single Fracture: (transient linear flow)



Specialized Time-Rate Analysis — Linear Flow Concepts


Creator: T.A. Blasingame Created: ~2017

10

Specialized Time-Rate Analysis (DCA) — Flow Regimes — Multi-Fractured Horizontal Wells

Discussion:

• MFHW model is the "master" solution for unconventional wells.

- Diagnostics can be obscured by clean-up and liquid-loading.
- Very significant time involved for observing a particular flow regime (k = 50 nd).

Transient Linear Flow Relation:

$$q_{\text{tot}} = C (A_{xf})_{\text{tot}} \frac{1}{\sqrt{t}}$$
$$(A_{xf})_{\text{tot}} = A_{xf,1} + A_{xf,2} + \dots + A_{xf,n}$$

Use of Hyperbolic Flow Relation to Represent Transient Linear Flow:

$$q(t) = \frac{q_{i,\text{hyp}}}{\left(1 + bD_i t\right)^{1/b}}$$

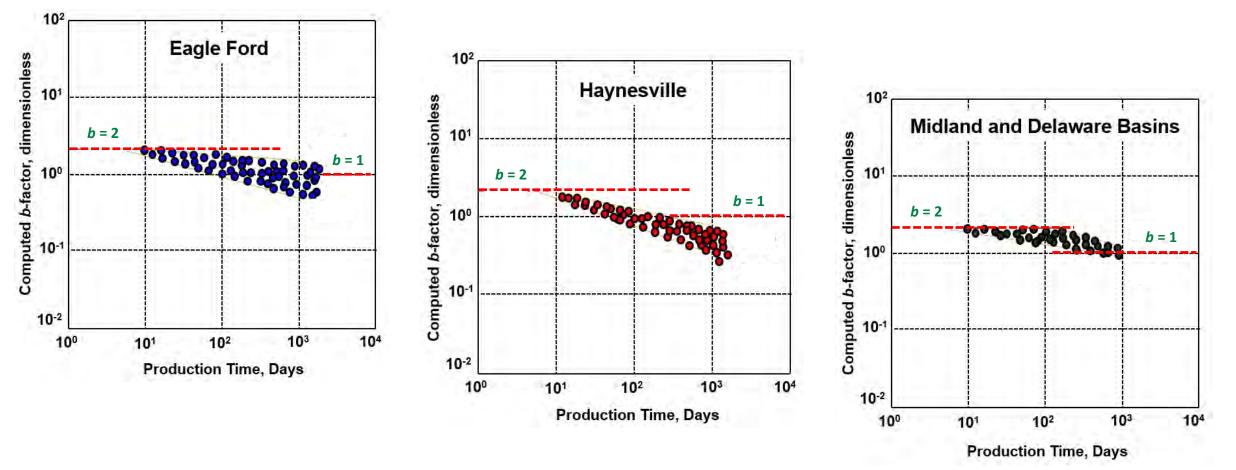
Assuming
$$b = 2$$

$$q(t) = \frac{q_{i,\text{hyp}}}{(1+2D_i t)^{1/2}}$$

As $t \to \text{large}; (1+2D_i t)^{1/2} \to \sqrt{2D_i} \sqrt{2}$

$$q(t) \approx \frac{q_{i,\text{hyp}}}{\sqrt{2D_i}} \frac{1}{\sqrt{t}} \approx a \frac{1}{\sqrt{t}} \approx a t^{-1/2}$$

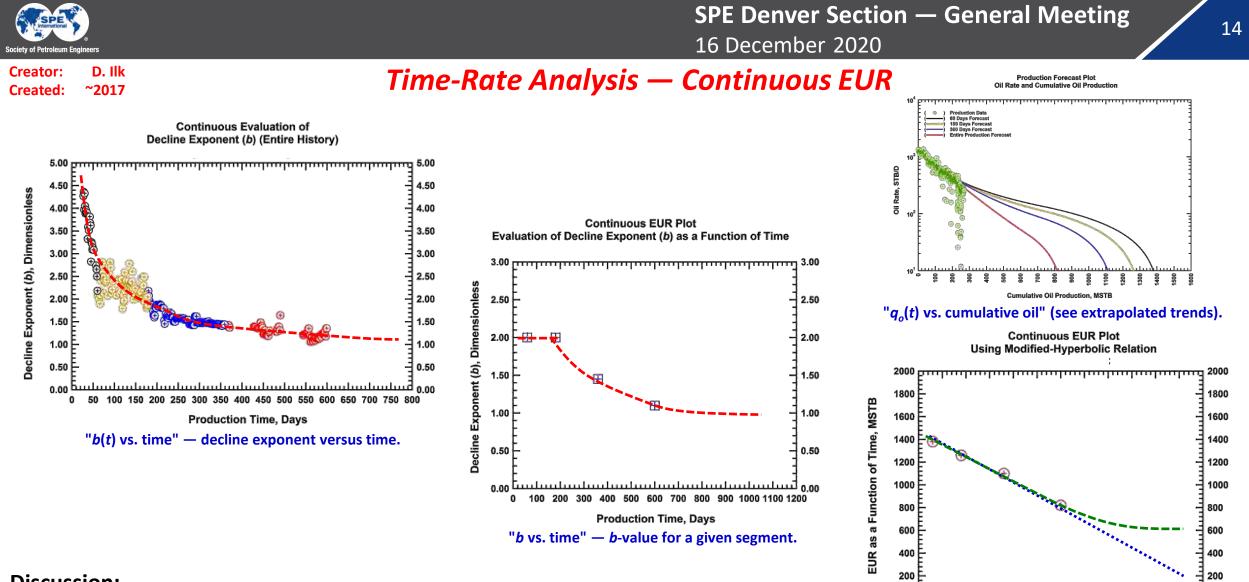
Creator: T.A. Blasingame Created: ~2017



Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs

Time-Rate Analysis (Also known as Decline Curve Analysis [DCA])

Time-Rate Analysis — *b*(*t*) *Play-by-Play*


Discussion:

- A constant "b(t)" value is unlikely for more than just a few months.
- Decline in "b(t)" in some/most cases, behavior can be considered "power-law."
- Conceptually, this decline in "b(t)" can be used to predict EUR(t).

| Tom BLASINGAME | Petroleum Engineering | Texas A&M University | College Station, TX 77843-3116 (USA) | t-blasingame@tamu.edu |

Creator: Created: D. Ilk

~2017

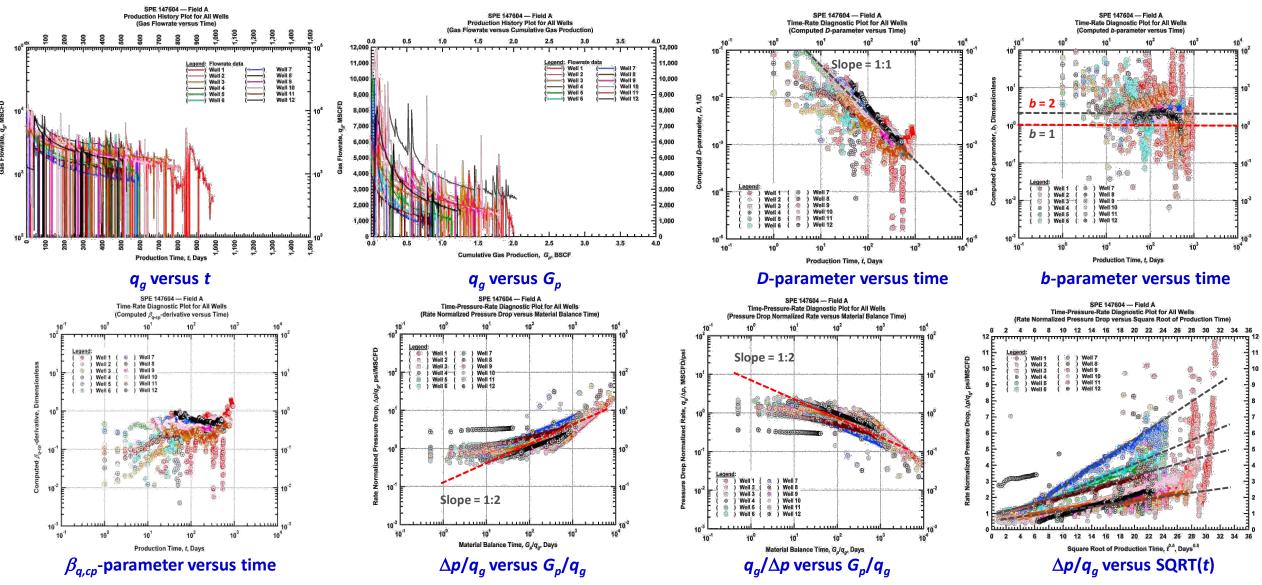
Discussion:

- Illustration of changing EUR as a function of time due to declining *b*-exponent.
- b(t) data are (relatively) well-behaved, selected constant b-values for a given segment.
- Declining EUR with time is characteristic of the declining b(t) function with time.

| Tom BLASINGAME | Petroleum Engineering | Texas A&M University | College Station, TX 77843-3116 (USA) | t-blasingame@tamu.edu |

ահասհասհասհասհասհասհ

Production Time, Days


"EUR vs. time" - EUR for a given segment.

500 600 700 800 900 1000 1100 1200

100 200 300 400

Time-Rate Analysis — Suite of Plots — Shale Gas Example

| Tom BLASINGAME | Petroleum Engineering | Texas A&M University | College Station, TX 77843-3116 (USA) | t-blasingame@tamu.edu |

Creator:

Created:

D. Ilk

~2017

Time-Rate Analysis — Modern Decline Curve Analysis Relations

Standard DCA Relations

"Arps Modified-Hyperbolic"

$$q(t) \equiv \begin{bmatrix} \frac{q_{i,\text{hyp}}}{(1+bD_i t)^{1/b}} & (t < t_{\text{lim}}) \\ \\ q_{\text{lim}} \exp[-D_{\text{lim}}(t-t_{\text{lim}})] & (t > t_{\text{lim}}) \end{bmatrix}$$

"Switch"Condition:

 $q_{\text{lim}} = q_{i,\text{hyp}} \left[\frac{D_{\text{lim}}}{D_i} \right]^{(1/b)} \qquad t_{\text{lim}} = \frac{1}{bD_i} \left[\left[\frac{q_{i,\text{hyp}}}{q_{\text{lim}}} \right]^b - 1 \right]$

$$q(t) \equiv \hat{q}_i \exp[-D_{\infty}t - \hat{D}_i t^n]$$

"Duong"

"116"

$$\frac{q(t)}{Q(t)} = a t^{-m}$$
 which leads to:

$$q(t) = q_1 t^{-m} e^{\frac{a}{1-m}(t^{1-m}-1)}$$

Proposed in the Last 3-5 Years "Modified-Wiorkowski" (cumulative)

 $Q(t) = \tilde{Q} \left[1 - \tilde{a} \exp[-\tilde{D}_i t] \right]^{\tilde{n}}$

"Modified-Ilk" (cumulative)

$$Q(t) = \overline{Q} \left[1 - \exp\left[-\overline{D}_{\infty}t - \overline{D}_{i}t^{\overline{n}}\right]\right]$$

"Zhang"

$$q(t) = q_i \exp\left[-a(t) t\right]$$

where: $a(t) = \beta_l + \beta_e \exp\left[-t^{-n}\right]$
Wanderley de Hollanda''
 $q(t) = q_i^* \ \theta_2(\chi, e^{-\eta t})$
where: $\chi = \frac{\pi}{2} \frac{x_i}{L}$ and $\eta = \frac{\pi^2}{L^2} \frac{k}{\phi \mu c_t}$
 $(\theta_2 \text{ is the second Jacobi theta function})$

Proposed by Students (2020)

"Bessel Function E₁(x)"

$$q(t) = q_i E_1(At^B)$$

"Bessel Function K₀(x)"

$$q(t) = q_i K_0(At^B)$$

"Logarithmic Distribution"

 $q(t) = q_i \left[1 - \left[\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln(t) - \mu}{\sqrt{2} \sigma} \right] \right] \right]$

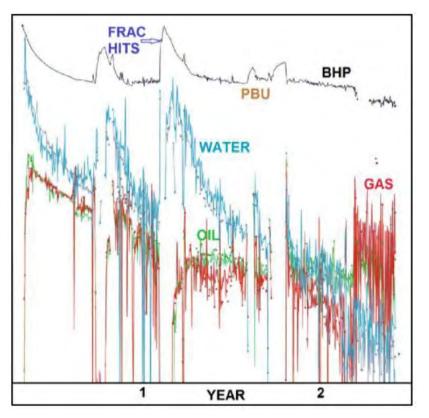
"Incomplete Gamma Function"

 $q(t) = q_i \Gamma(A, t^B)$

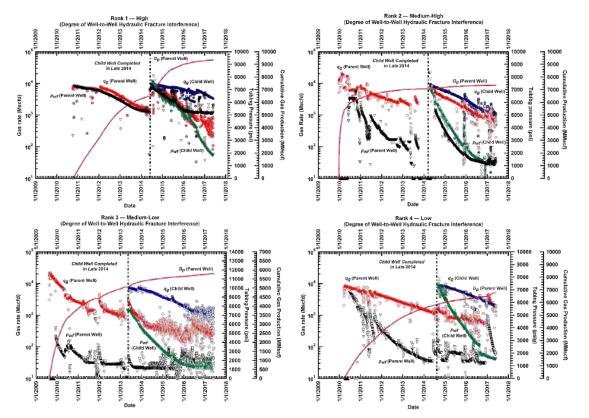
Hint: This one does <u>not</u> work.

"Modified-Harmonic"

$$q(t) = q_i \frac{1}{[1 + At^B]}$$

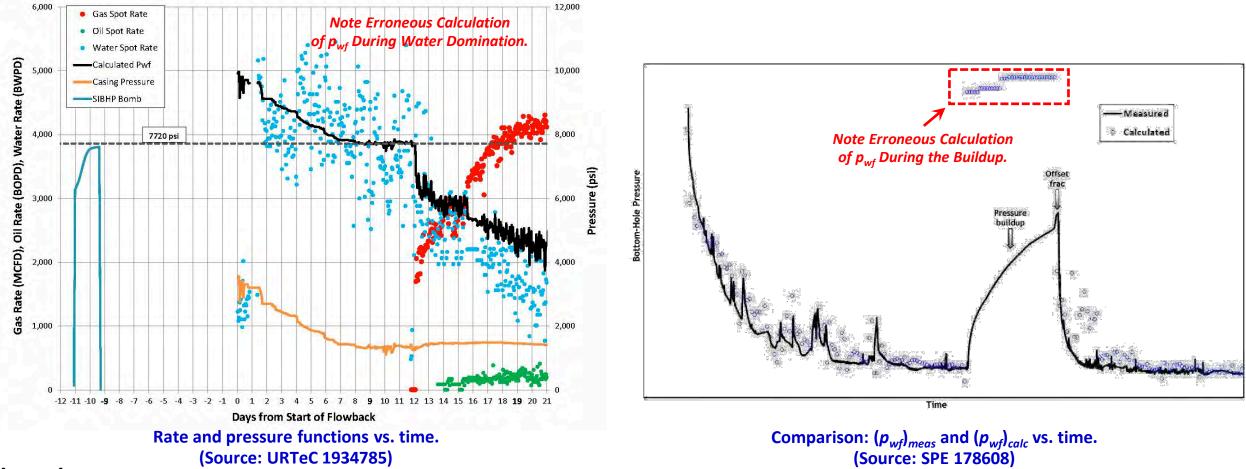


Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs


Pressure Transient Analysis (PTA)

Pressure Transient Analysis – Value Proposition for Reservoir Pressure Measurement

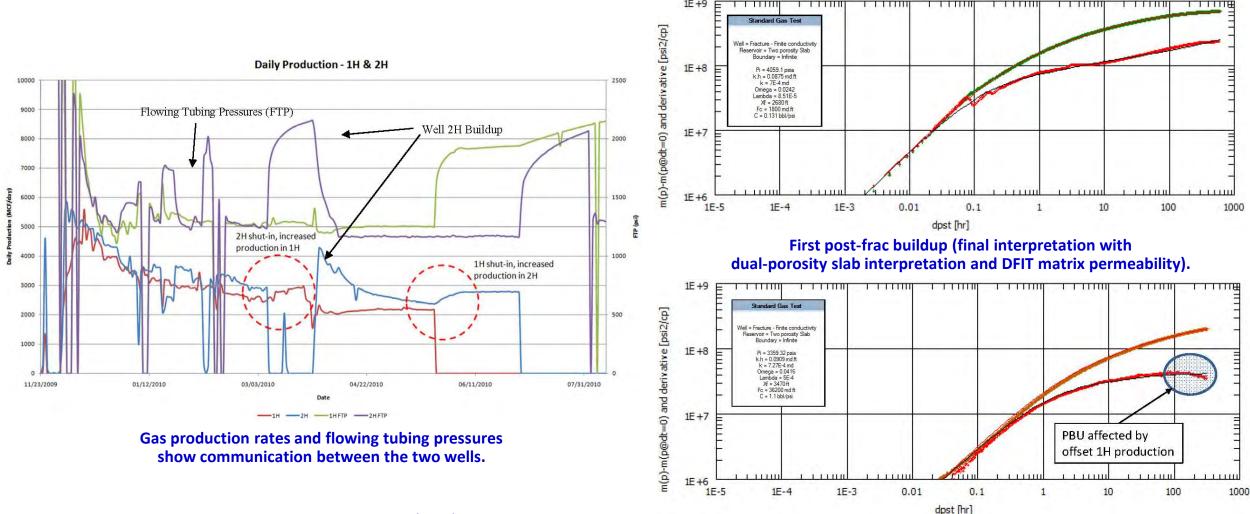
Rate and pressure functions vs. time, multi-well interference. (Source: SPE 187180)


Rate and pressure functions vs. time, examples of "Fracture-Directed Interactions" (or "Frac-Hits"). (Source: URTeC 2670079)

Discussion:

- Characterize reservoir performance without surface/wellbore phase segregation effects.
- Diagnose offset behavior (... *i.e., "well-to-well fracture interaction" or "frac-hits"*).
- Diagnose production interference (... via hydraulic fracture and/or natural fractures, faults, etc.).

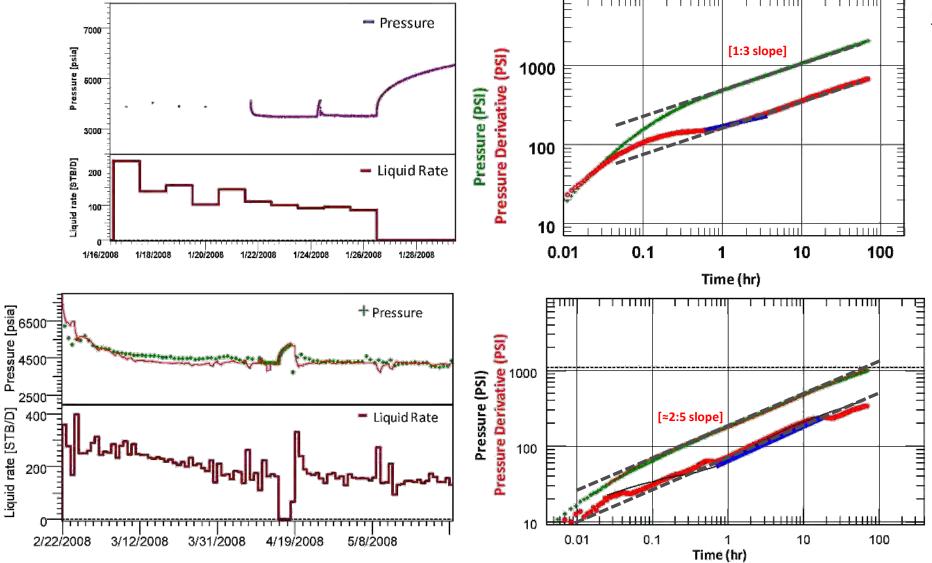
Pressure Transient Analysis — Implications of Errors and Inconsistencies in Pressure Data



Discussion:

- Surface pressure measurements influenced/biased by operational practices.
- Downhole measurements less affected by operations (minor issues w/choke changes).
- Gauge failure (rare) or gauge losing calibration (uncommon, but it does happen).

Pressure Transient Analysis — PTA Cases in Marcellus (Gas Shale) [SPE 145463 (Mayerhofer)]



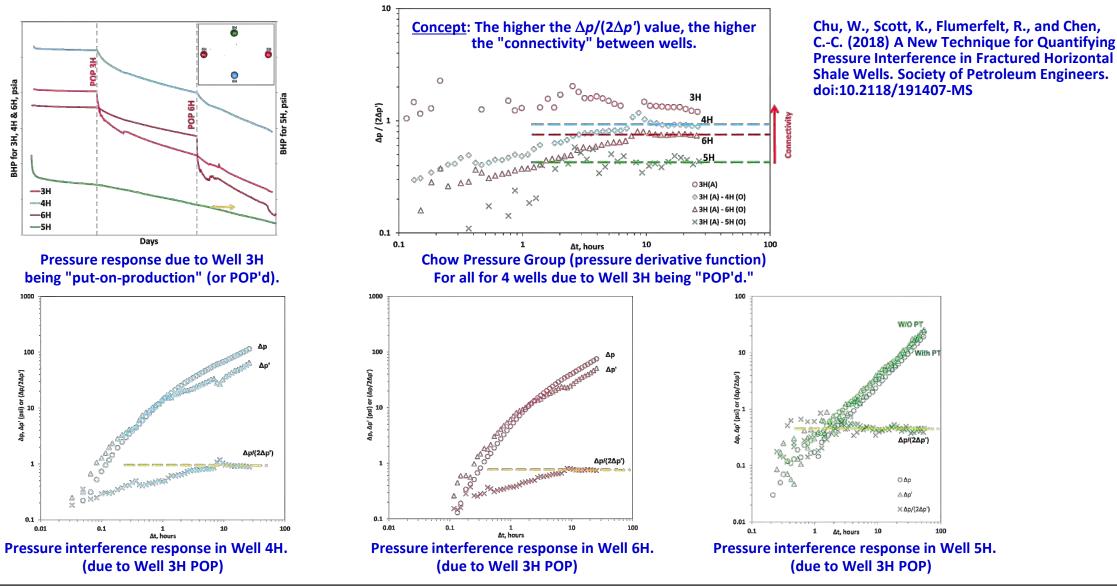
Mayerhofer, M. J., Stegent, N. A., Barth, J. O., & Ryan, K. M. (2011). Integrating Fracture Diagnostics and Engineering Data in the Marcellus Shale. Society of Petroleum Engineers. doi:10.2118/145463-MS.

Second post-frac buildup after 5 months of production affected by Well 1H offset production (dual-porosity slab interpretation with DFIT matrix permeability).

Pressure Transient Analysis — PTA Cases in Bakken (Oil Shale) [SPE 162473 (Kurtoglu)]

Questions:

- •What causes the "sub-linear" (< 1:2 slope) trends?</p>
 - —Anomalous diffusion?
 - -Multiphase flow effects?
 - -Well geometry effects?
 - Fracture spacing effects?Fractal effects?
- •Are these features artifacts?
 - —Data acquisition effects?
 - -Producing time effects?
 - —Phase behavior effects?
 - -Wellbore storage effects?
- Property estimates?
 - -Permeability?
 - —Fracture half-length? [X]
 - -Fracture conductivity? [?]


Kurtoglu, B., Torcuk, M.A., & Kazemi, H. (2012) Pressure Transient Analyses of Short and Long Duration Well Tests in Unconventional Reservoirs. Society of Petroleum Engineers. doi:10.2118/162473-MS.

| Tom BLASINGAME | Petroleum Engineering | Texas A&M University | College Station, TX 77843-3116 (USA) | t-blasingame@tamu.edu |

[X]

Pressure Transient Analysis — Quantifying Pressure Interference [SPE 191407 (Chu)]

Pressure Transient Analysis (PTA), Rate Transient Analysis (RTA), and Decline Curve Analysis (DCA) Methods for Wells in Unconventional Reservoirs

Rate Transient Analysis (RTA)

Rate Transient Analysis — What Do You Want to Estimate?

Average Reservoir Pressure:

- RTA/PTA Calculated using reservoir model.
- PTA Use the Arps/Smith Plot:

$$p_{ws} = \overline{p} - \frac{1}{b} \frac{d}{\Delta t} p_{ws}$$

SRV — Stimulated Reservoir Volume:

- RTA SRV estimated from reservoir model.
- FMB SRV estimated using:

$$\frac{q}{(p_i - p_{wf})} = \left[\frac{1}{b_{pss}}\right] - \left[\frac{1}{b_{pss}}N\right] \frac{B_o}{B_{oi}} \frac{N_p}{(p_i - p_{wf})c_t} \text{ [FMB]}$$
$$\frac{(p_i - p_{wf})}{q} = \left[b_{pss}\right] + \left[\frac{1}{Nc_t} \frac{B_o}{B_{oi}}\right] \frac{N_p}{q} \text{ [RTA]}$$
Square Root Time Plot:

$$\frac{q}{(p_i - p_{wf})} = n_f A_{xf} \sqrt{k} \frac{1}{\sqrt{t}} = c \frac{1}{\sqrt{t}}$$

OR
$$\frac{(p_i - p_{wf})}{q} = \frac{1}{n_f A_{xf} \sqrt{k}} \sqrt{t} = \frac{1}{c} \sqrt{t}$$

Reservoir Properties: k, x_f, n_f, s_f, natural fracture properties, ...

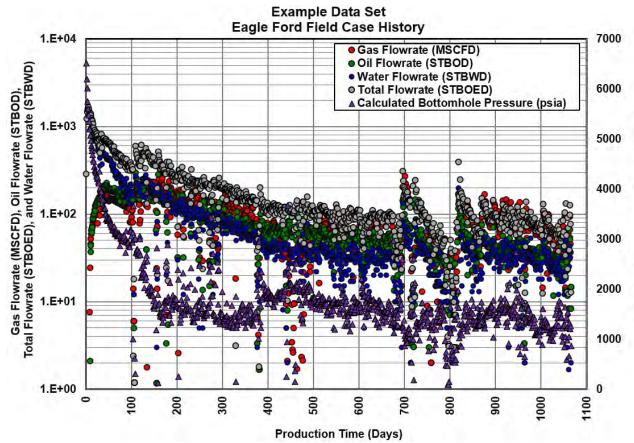
- RTA Combines q(t) and $p_{wf}(t)$ + reservoir model.
- PTA Analysis of $p_{wf}(t)$ + reservoir model.

q(t)_{Forecast}

- DCA Use an f(t) proxy model (decline curve analysis).
- RTA Combines q(t) and $p_{wf}(t)$ + reservoir model.
- PTA Superposition of $p_{wf}(t)$ + reservoir model.

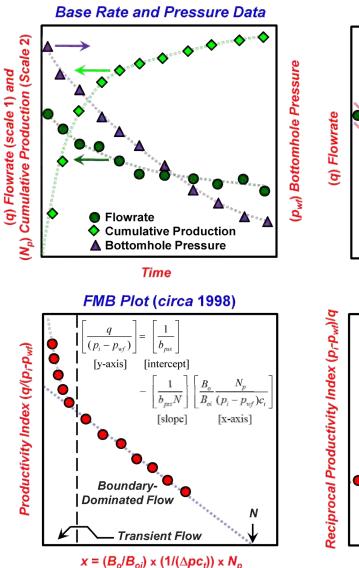
Data:

Time-Rate-Pressure (TRP) Data. Completions Data. Phase Behavior (PVT) Data. Reservoir Properties.


Rate Transient Analysis — What Can We do to our Data?

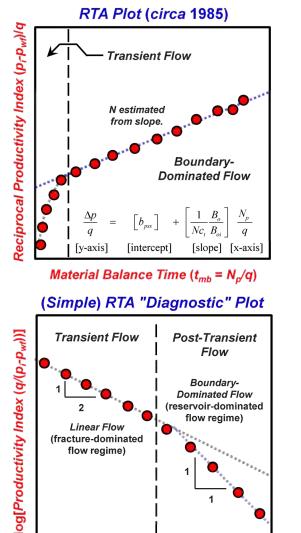
Data Operations:

- Auxiliary functions:
 - Productivity Index and other normalizations.
 - Time root functions.
- Smooth the Data:
 - Averaging, smoothing algorithms, splines, etc.
 - Wavelets.
- Calculus:
 - Integration (cumulative).
 - 1st and 2nd derivatives.
 - Other mathematical operations/operators.
- Mathematical Transforms:
 - Laplace Transform.
 - Other transform(s).
- AI algorithms:
 - Outlier rejection methods.
 - Training models.

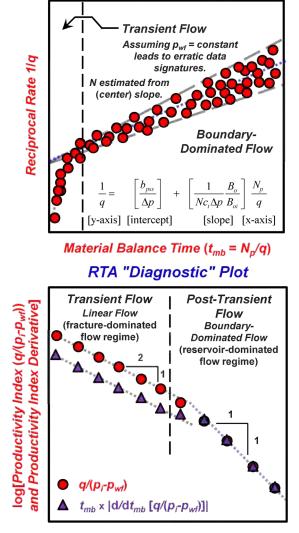

Guidance:

- (advice) Do not "over-smooth" data.
- (advice) Do not "over-edit" data.
- There is a balance, must maintain data fidelity.

Rate Transient Analysis — Basic Data and Diagnostic Plots


Time Square Root Time Plot Linear Flow Post-Linear Flow Linear Flow (fracture-dominated flow regime "End of Linear Flow" Personal Comment: I do NOT believe that "the End of Linear Flow" is relevant, other than (perhaps) as a correlation point for other results (e.g., EUR or say, completion parameters)

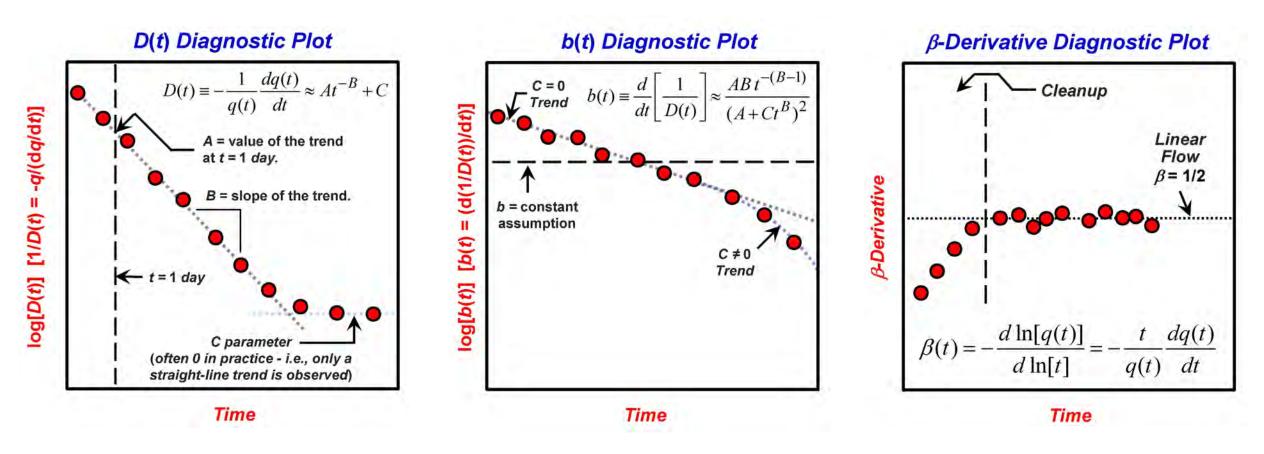
Square Root[Time]


Data Editing Plot

Edited (*Rejected*) Data Outlier Rejection Limits

Retained (Unrejected) Data

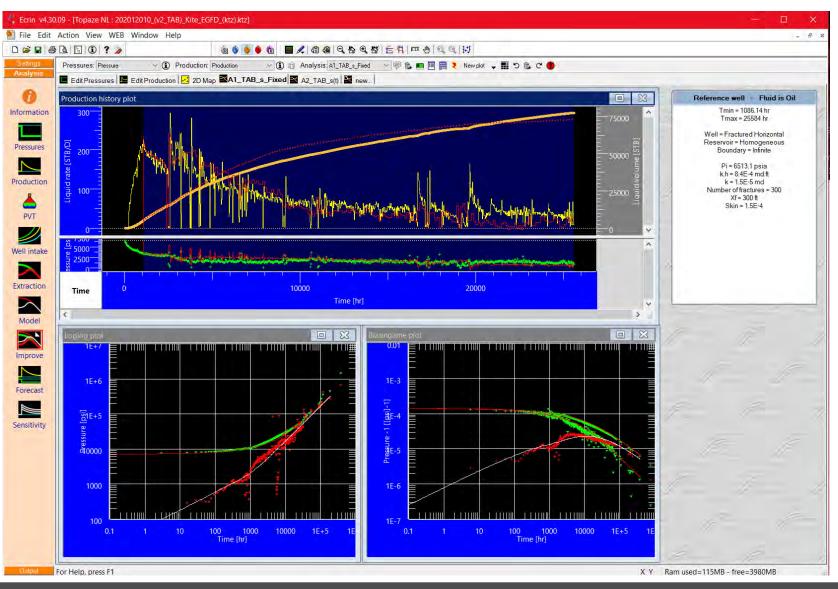
Reciprocal Rate Plot (circa 2009)



 $(t_{mb}) \log[Material Balance Time (N_p/q)]$

 $(t_{mb}) \log[Material Balance Time (N_p/q)]$

Rate Transient Analysis — Advanced Time-Rate Analysis Plots



Discussion:

- D(t) is the "decline parameter" and represents the combined behavior of the rate and rate derivative functions.
- *b*(*t*) is the "decline exponent" and represents the behavior of the second derivative of rate function.
- $\beta(t)$ is the " β -derivative" and is a function taken from pressure transient analysis; it yields the slope of a power-law trend.

Rate Transient Analysis — Example RTA (Eagle Ford, TX-USA) (constant skin case)

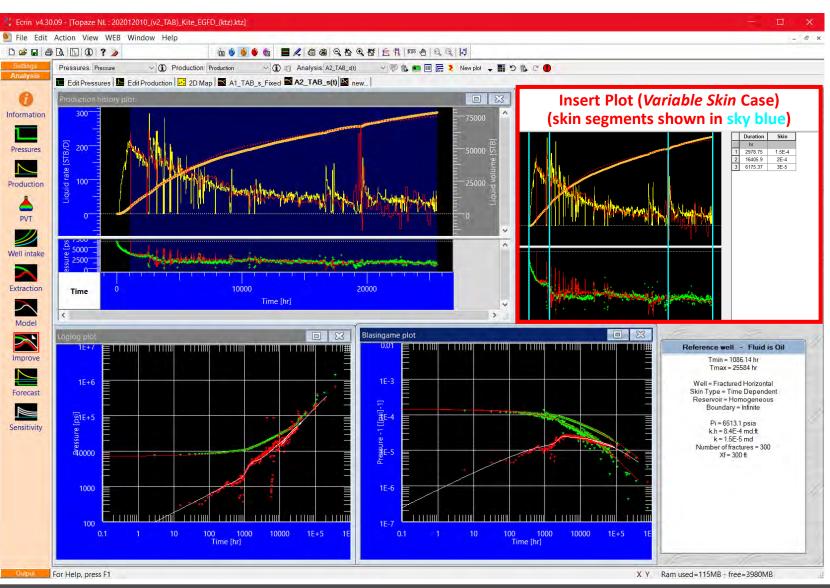
Background:

Daily q_g , q_o , and q_w . Daily $p_{wf,cal}$. Full completion history. Relevant PVT data. Selected/necessary reservoir data.

Interpretation:

Multi-fracture horizonal well model. Flowrate data are erratic. Pressure data not as erratic as rate. *PI* and *RPI* functions are "reasonable."

History Match: Normal MFHW


- $s_f = 1.5 \times 10^{-4}$ (fracture face skin)
- $\dot{n_f}$ = 300 (number of fractures)
- $\dot{x_f}$ = 300 ft (fracture half-length)
- \vec{k} = 8.4x10⁻⁴ (formation permeability)

Comment:

Some mismatch in rates/cumulative. Minor mismatch in pressure.

Rate Transient Analysis — Example RTA (Eagle Ford, TX-USA) (time-variant skin case)

Background:

Daily q_g , q_o , and q_w . Daily $p_{wf,cal}$. Full completion history. Relevant PVT data. Selected/necessary reservoir data.

Interpretation:

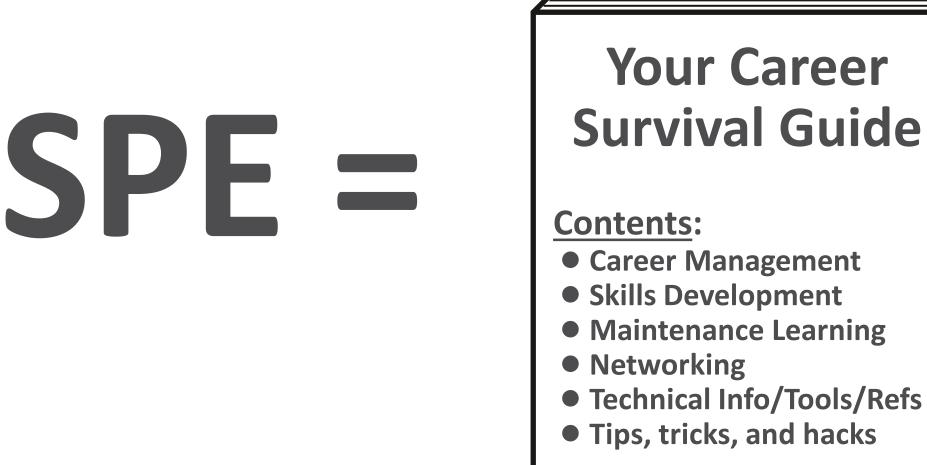
Multi-fracture horizonal well model. Flowrate data are erratic. Pressure data not as erratic as rate. *PI* and *RPI* functions are "reasonable."

History Match: Normal MFHW

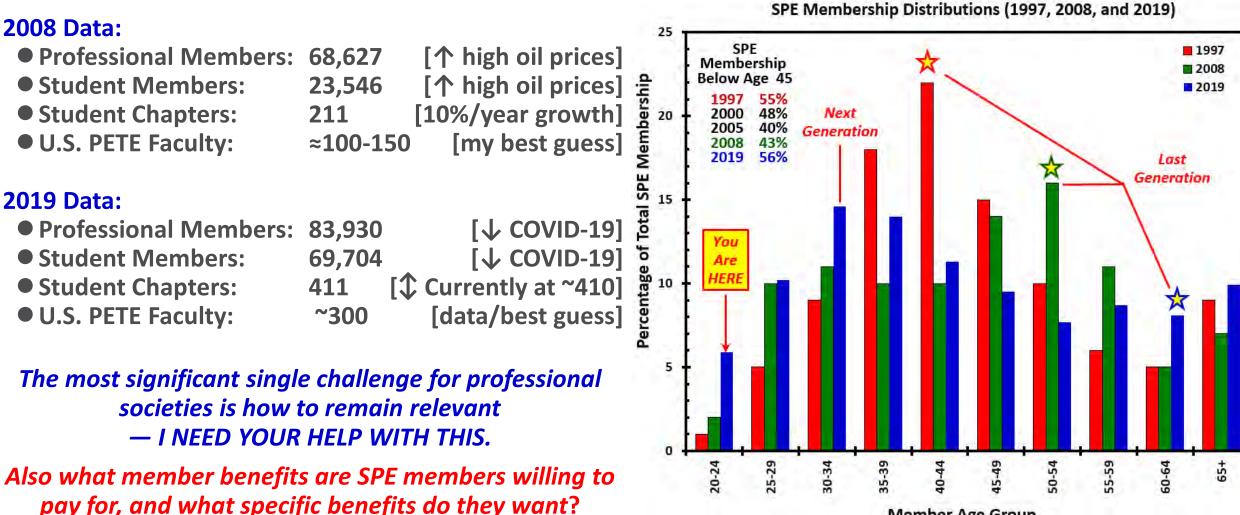
 $s_f = s_f(t)$ (time-variant skin) $n_f = 300$ (number of fractures) $x_f = 300$ ft(fracture half-length) $k = 8.4 \times 10^{-4}$ (formation permeability)

Comment:

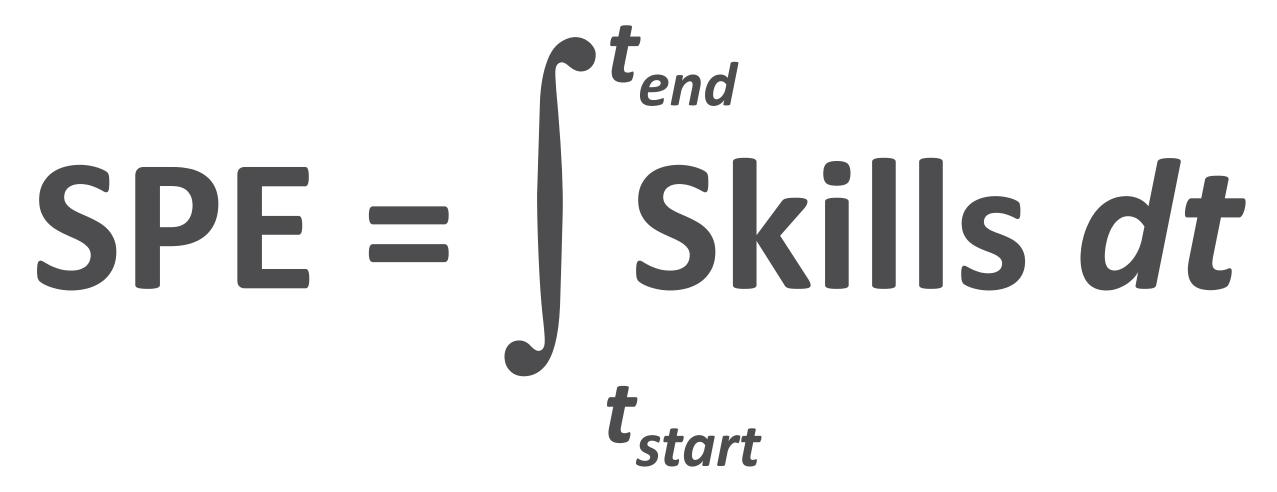
Rates/cumulative matches very good. Pressure match slightly better.


Comments

SPE


31

SPE Organizational Growth (2008-2019)


SPE Membership Profile (... Evidence of the "Big Crew Massacre")

Member Age Group

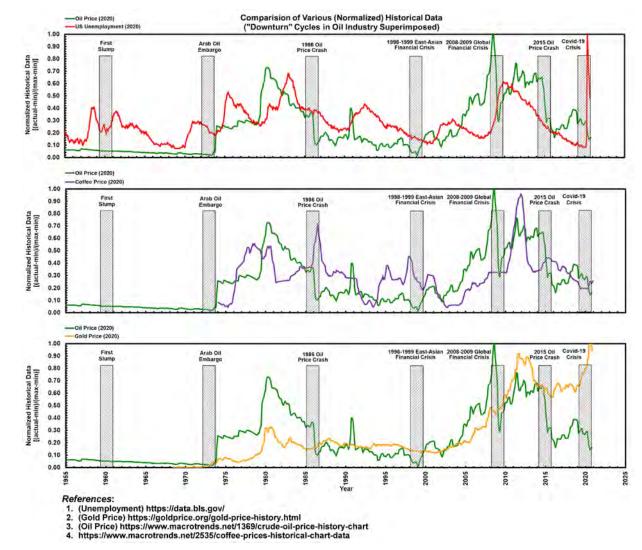
33

 $t_{start} = ...$ when you start your SPE membership. $t_{end} = ...$ retirement, where fishing is your day job.

Technical Knowledge — Skills, Needs, Standards (... Has not changed significantly since 1940's)

Skills that Define a Petroleum Engineer:

- General Knowledge/Skills (Math, Engineering, etc.)
- Oil and Gas Drilling Systems
- Production Engineering and Operations
- Petrophysics, Formation Evaluation, and Geology
- Reservoir and Well Performance, Reservoir Fluids
- Petroleum Project Evaluation (Reserves/Economics)
- Integrated/Multidisciplinary Teams


Emerging Needs/Skills that Must be Emphasized:

- Unconventional Reservoir Technologies
- Statistics/Data Manipulation (*i.e.*, "Data Analytics")
- HSE+S (+ the so-called "Sustainability" aspects)
- ESG = Environmental, social & corporate governance
- Integration: DRLG, CMPL, RESR, PROD, FACL, ...

Standardization:

- Traditional Areas: North America/Western Europe
- Emerging Areas: FSU/Africa/S.E. Asia/Middle East
- COMPANIES need to help SPE establish standards

Commodity Businesses are Cyclical (... Oil Price Appears to be a Leading Indicator)

SPE = dt

(Network, skills development, leadership, volunteerism)

What Can You Do for SPE as a Student?

Participate:

- Participate in your Student Chapter.
- Participate in your Regional Section.
- Participate in a program committee.
- Engage with technical expert(s).
- Participate in the e-mentoring program.
- Nominate a colleague for an award.

Create:

- Write a paper. (but have a good mentor)
- Create an event in your Student Chapter.
- Create a community service experience.
- Create a training opportunity for students.
- Create a technical event in your Chapter.
- Create a social/networking event.

Why Should I Volunteer?

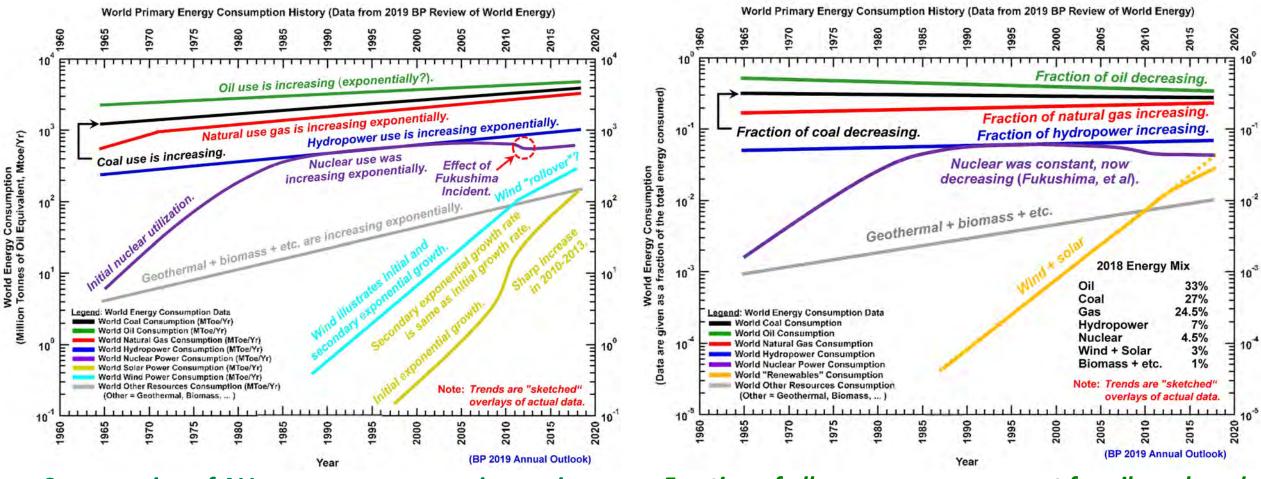
Benefits of Volunteerism:

- Learning SPE from the bottom-up.
- Learning how to function in an organization.
- Learning how to lead without authority.
- Learning how to create.
- Learning how to work with others.
- Learning how to create from scratch.

How Do I Volunteer?

SPE = |World|⁷

(Translation: SPE transforms the World)



Consumption

SPE Denver Section — General Meeting 16 December 2020

We are Energy Transition" (... Our world has a gigantic appetite for energy ...)

We are Energy Transition" (... Oil and gas are the keys to the future energy mix ...)

Consumption of ALL energy sources are increasing at independent exponential rates ... A-L-L.

Fraction of all energy sources except for oil, coal, and nuclear are increasing at independent exponential rates.

SPE = #WeAreSPE You

(Translation: A wee bit of career advice ...)

What We Do Really Matters ... (The contract you are signing is to take care of ...)

Billions of people without access to:

0.7 - 2.1	Clean/secure water	[US CDC ¹ , WHO ²]
1.8	Adequate sanitation	[US CDC ³]
0.95	Electricity	[IEA ⁴]
2.6	Clean cooking	[IEA ⁵]
0.8 - 2	Sufficient/secure food	[UN ⁶]
1.2	Safe and secure housing	[WRI ⁷]
0.264	A <u>ny</u> education	[UNESCO ⁸]
4(+)	Internet	[UN ⁹]

To put this in context: (what is a "billion"?)

1 Billion seconds = 31.69 years = 11,574 days 16,666,666.6667 minutes

References:

- 1. https://www.cdc.gov/healthywater/global/wash statistics.html#:~:text=Access%20to%20WASH,world's%20population)%201%2C%203.
- 2. https://www.who.int/news-room/detail/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who
- https://www.cdc.gov/healthywater/global/wash_statistics.html#:~:text=An%20estimated%20790%20million%20people,access%20to%2 0adequate%20sanitation%2015.
- 4. https://www.iea.org/commentaries/population-without-access-to-electricity-falls-below-1-billion
- 5. https://www.iea.org/reports/sdg7-data-and-projections/access-to-clean-cooking
- 6. https://www.un.org/en/sections/issues-
- depth/food/index.html#:~:text=Considering%20all%20people%20in%20the,in%20North%20America%20and%20Europe
- 7. https://www.wri.org/news/2017/07/release-12-billion-people-living-cities-lack-access-affordable-and-secure-housing
- 8. https://unesdoc.unesco.org/ark:/48223/pf0000259338
- 9. https://www.itu.int/dms_pub/itu-s/opb/pol/S-POL-BROADBAND.18-2017-PDF-E.pdf

Career Guidance 101 (Sort of a checklist/list of reminders ...)

What is Good? Great? Ambition?

- Good MANAGERS do things right... (... your strengths) • Good LEADERS do the right things... (... your values) • Great achievements = desire to succeed... (... fact of life) • Great achievers make great sacrifices... (... e.g., family) • Ambition is fine, but know your limitations (... trust me) Your Career Choices... • Your value is your skills set... (... harsh, but true)
- Inexperience is your limitation ... (... listen/learn/lead)
- 70% of young engineers want management... (>3% get it)
- Are you fit for command... (... yes ... no ... maybe?) Choices?
 - (... there are no "wrong" choices)
- Commitments? (... you are only as good as your word)

Learn How to Work ...

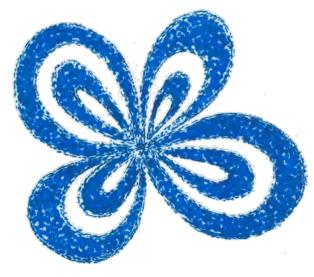
- You are paid to complete tasks... (... don't waste time)
- You are paid to make decisions... (... don't be afraid)
- You will make mistakes... (... but never put others at risk)
- You are no longer in school... (... no "grades" but ...)
- You work with incomplete data... (... analyze, don't quess)

41


Students SPE **Student = limit** Leadership fun $\rightarrow \infty$ Chapters Learning

TAMU-SPE 2019-2020 SPEi Annual Report Photos

TAMU-SPE 2019-2020 Photo Mural (Student Prepared)


It is not an exaggeration to say that being the SPE Student Chapter Advisor is my favorite job! There is never a dull moment (literally), and watching students evolve into Young Professionals is one of the most rewarding aspects of my career.

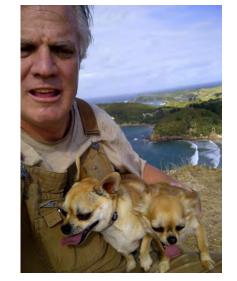
So what is Tom Really Like?

Napkin Art (drawn on a flight)

Tom with Granddaughter

Marriage Counseling (in NZ)

2020 Summer Internship (stump remover)

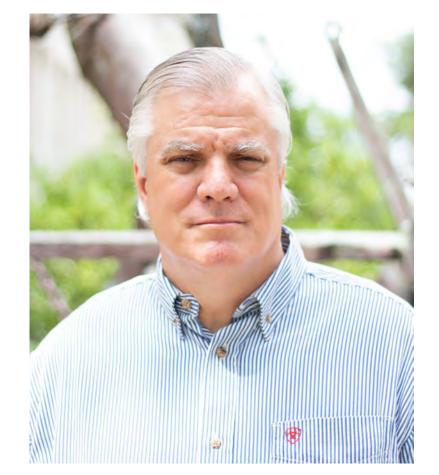


December in College Station

Family in "Hobbiton"

My Favorite Place and Best Friends

View from NZ Home



Tom's Biography

[2019]

(China

Tom BLASINGAME Petroleum Engineering Texas A&M University College Station, TX 77843-3116 (USA) +1.979.845.2292 — t-blasingame@tamu.edu

Role:

- Professor, Texas A&M U.
 B.S., M.S., & Ph.D. Texas A&M U.
- Counts: (October 2020) •Over 170 Technical Articles •16 Ph.D./72 M.S. Graduates

Historical Technical Contributions:

- •(1980's) Material Balance DCA (so-called "Rate Transient Analysis" (or RTA))
- •(1990's) Analysis of Water-Oil-Ratio (WOR) Behavior
- •(1990's) Direct Estimation of pave from Pressure Buildup Tests
- •(2000's) Pressure Integral and "Beta" Derivative for PTA and RTA Methodologies

removed overalls

- (2000's) DCA and CEUR Relations for Unconventional Reservoirs
- (2010's) Diagnostic Analysis of Time-Rate Data (i.e., the qDb-plot)
- (career) Correlations for Rock and Fluid Properties

(career) Deconvolution Methods (approximate, direct, and numerical)

Historical Professional Recognition:

- SPEi Distinguished Member (2000)
- SPEi Distinguished Service (2005)
- SPEi Uren Award (2006)
- •SPEi Lucas Medal (2012)

Research Interests: (2020)

- Time-Rate ("Decline") Analysis
- Early-Time "Flowback" Analysis
- Time-Rate-Pressure (RTA) Diagnostics
- Pressure Transient Analysis in Shales

SPEi DeGolyer Service Medal (2013)

[2012]

(civilized photo)

- SPEi Distinguished Faculty Award (2014)
- SPEi Honorary Member (2015)
- SPEi Director (Reservoir) (2015-2018)
- SPEi President (2021)
- Production/Completion Correlations
- Numerical Analysis/Interpretation of Data
- Phase Behavior of Reservoir Fluids
- Analytical Solutions for Reservoir Behavior