

Hydrogen and Energy 101: Role of CCUS

SPE DENVER SECTION – March 17, 2021

Talib Syed, P.E.

www.talibsyed-assoc.com

Tel: 720.877.1272 (m)

Outline of Presentation

- Production and Uses of H₂
- Integration of Fossil Energy into the H₂ Economy
- H₂ as a Solution to a Carbon-Neutral Economy
- Brief Look at the H₂ Economy
- Health/Safety Aspects of H₂
- Global CCS Projects
- Challenges in Scaling up the H₂ Economy
- Concluding Remarks

Production and Uses of Hydrogen

- H₂ economy is big news today, but challenges to produce, use and store H₂. Significant increase in H₂ use by 2050 - countries transition toward a low-carbon economy. Fossil fuels (mostly natural gas) will remain primary source of H₂ by 2050
- ~ 70% of global CO₂ production is from Steam Methane Reforming (SMR) of natural gas
- Main uses of H₂: Ammonia (NH₃) production for fertilizers; as a chemical feedstock and catalyst; in petrochemical and refinery processing. Secondary uses: As mixture of gases for methanol and steel production. Current share from renewables and fossil fuel plants with CCUS is very low (< 0.7%)
- Price of H₂ varies between regions, end uses and H₂ transportation

Hydrogen production: what colour?

	Commonly used term	Process	Carbon output
	"Grey" hydrogen	 Fossil fuel-to-hydrogen conversion 	 Fossil CO₂ is emitted
		 Electrolysis based on high-carbon electricity 	
	"Blue" hydrogen	 Fossil fuel-to-hydrogen conversion with CCS 	 Fossil CO₂ is captured and stored
BON"		Methane pyrolysis	 No CO₂ is emitted, solid carbon is produced
CAR	"Green" hydrogen	 Sustainable biomass-to-hydrogen conversion 	 Biogenic CO₂ is emitted
/LOW-(Water-splitting (electrolysis/photoelectrocatalytic) based on renewable electricity 	 No CO₂ is emitted
CLEAN	Carbon negative hydrogen	 Sustainable biomass-to hydrogen-conversion with CCS 	 Biogenic CO₂ is captured and stored
		Biomass pyrolysis	 No biogenic CO₂ is emitted, solid carbon is produced

REF: IOGP Fact Sheet, 2020 - H2 Scaling up hydrogen in Europe

Hydrogen applications

As a feedstock in the **chemical**, **refining and steel industry**, and as low-carbon fuel in energy-intensive processes

Used into the gas grid to decarbonise residential and commercial heating

In passenger cars, as well as heavy and long-haul road and maritime transport

In the **power sector**, supporting the transition towards net-zero emissions

REF: IOGP Fact Sheet, 2020 – H2 Scaling up hydrogen in Europe

Figure 3. U.S. and Global Production of Hydrogen

REF: Hydrogen Strategy: Enabling A Low-Carbon Economy, USDOE, July 2020

Figure 8. Global Potential for Future Use of Hydrogen

Hydrogen potential by market in 2050, %, exajoules

1 % of total annual growth in hydrogen and variable renewable-power demand.

² For aviation and freight ships.

³ Carbon capture and utilization; % of total methanol, olefin, and benzene, toluene, and xylene (BTX) production using olefins and captured carbon.

REF: Hydrogen Strategy: Enabling A Low-Carbon Economy, USDOE, July 2020

Figure 1. Integration of Fossil Energy into the Hydrogen Economy⁴

The potential of CCS applied to hydrogen production

Source: IEA (2019)

Figure 4. Current Cost of Hydrogen Production and CO₂ Intensity

(Source: IEA Roadmap for Hydrogen and Fuel Cell and DOE Baseline Studies) Hydrogen Strategy: Enabling a Low-Carbon Economy, USDOE, July 2020

H₂ as Part of Solution to a CO₂ -Neutral Energy Supply

- H_2 is not an energy source but an energy carrier key reason why H_2 might outcompete electricity in some situations. Since H_2 combustion produces H_2O but no CO_2 ideal for producing CO_2 neutral energy (like electricity)
- H₂ can be stored (in tanks and underground) and transported in a stable way (can use existing gas pipeline network)
- H₂ can be combined with carbon and nitrogen to make hydrogen-based fuels (easier to handle), and used as feedstock in industry, reducing emissions
- Can reduce high CO₂ intensity upstream by replacing fossil fuels with renewables or nuclear as initial energy input, or equip fossil fuel plants with CCUS
- "Carbon Neutral" refers to GHG reduction (Kyoto Protocol, 1997 carbon offset credit) and "Net Zero Carbon" aims to limit global carbon emissions to reach net zero by 2050 (limits surface temperature rise to 1.5^o C – Paris Agreement)

11

REF: IOGP Fact Sheet, 2020 – H2 Scaling up hydrogen in Europe

Figure ES-5: 2018 Sources of CO₂ Emissions (MMT CO₂ Eq.)

REF: EPA 430-R-20-02 – Inventorv of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2018

Brief Look at the H₂ Economy

- Deploying clean H₂ could reduce ~ 34% of GHG emissions from fossil fuels by 2050.
- A scaled-up H₂ industry can lower cost of renewable H₂ to \$ 2/kg in 2030 and to \$ 1/kg in 2050 (compared to current cost of \$ 7.50/kg for green and \$ 2.40/kg for blue H₂). Costs could be ~ 25% lower in U.S., Brazil, Australia, Scandinavia, Middle East with good renewable and H₂ geologic storage resources and ~ 50 70% higher in Japan and Korea
- Steel industry likely benefactor of H₂ economy (~ 9% of global carbon emissions) by using H₂ instead of fossil fuels for half of global output by 2050
- Home heating and cooking another benefactor by blending 5-20% with natural gas for transport through existing pipelines. Similar analog to switch use of *town* gas (H2/CO mix) to natural gas for heating/cooking in major cities in the 1960s

14

• H₂ will play a bigger role in transportation (near term mainly for trucks/buses/long-haul transport rather than for cars/motorcycles)

Physical Properties of Hydrogen/Health and Safety Risks

- H₂ has more energy/unit of mass compared to natural gas or gasoline (attractive as transport fuel), however has low energy density/unit of volume. Need larger H₂ volumes to meet identical energy demands as other fuels. Use larger or faster-flowing pipelines and larger storage tanks.
- H₂ can be compressed, liquified, or transformed into H₂-based fuels with a higher energy density, but this (and subsequent re-conversion) uses some energy
- H₂ handling requires special equipment and procedures. Diffuses into some materials (iron and steel pipes and through sealings and connections) more easily than natural gas.
- H₂ is a non-toxic gas, but highly flammable due to its high flame velocity, broad ignition range and low ignition energy. H₂ flame not visible to the naked eye and since it is colorless and odorless difficult to detect fires and leaks. Adequate ventilation and leak detection and special flame detectors are required - widespread use would bring new challenges that will have to be addressed.
- Health and safety considerations of H₂-based fuels and feedstocks are familiar in the energy sector exceptions are NH3 and liquid organic hydrogen carriers (LOHCs)
- NH3 raises more health and safety concerns than H₂ and will require professionally trained operators. It is highly toxic, flammable, corrosive and escapes from leaks in gaseous form. However, unlike H₂ it has a pungent smell and can be easily detected

Geological storage of H₂

- Geological storage best option for large-scale/ long-term storage and tanks for short-term/ small-scale storage
- Possible storage sites: Salt caverns, depleted O&G reservoirs and deep saline aquifers
- Salt caverns used for H₂ storage in UK since 1970s and in US since 1980s (with largest H₂ storage facility – 10-20 ktH2) and likely the lowest-cost option
- Depleted O&G reservoirs have larger capacity, but are more permeable and require contaminants removal prior to use in fuel cells
- Aquifers have least amount of experience. Both depleted O&G and aquifers have natural barriers that can provide containment. If can overcome challenges, may be best for large scale H₂ storage

Global CCS projects

17

Courtesy: Shell Quest Canada

TABLE 26 | ACTUAL FEED, CAPEX AND OPEX COSTS AND REVENUE FOR SHELL QUEST

[Source: Shell, 2016a and Shell, 2017m]

PROJECT PHASE		MILLIONS OF DOLLARS, CANADIAN (\$)		
COSTS				
FEED		139.4		
CAPEX	Labour and commissioning	147.9		
	Tie-ins	37.1		
	Capture	437.5		
	Transporation	127.4		
	Storage	40.4		
Total CAPEX		790.3		
Total CAPEX + FEED		929.7		
Annual OPEX	2016 (Actual)	30.2		
	2018 (Estimate)	35		
REVENUE				
Government Grants				
Alberta	2012-2014*****	298		
	2015	149		
	2016 and beyond	298		
Canada	2009-2014	108		
	2015	12		
Total Grants		865		
CO ₂ Credits	2016 (Actual)	3.3		
Total REVENUE	To end of 2016 (Actual)	600.1		

Top Clean Energy Developments of 2020

- Coal is on its way out: (1) US power companies retiring > 12 coal plants in US (~ 26 gigawatts), (2) in Europe coal plants retirements outpaced new plant commissioning, (3) global coal consumption down COVID-19
- Gas also in decline: As utilities retire coal plants, also not replacing coal with gas
- **China and carbon neutrality:** Per Paris Accord, will achieve peak CO2 emissions before 2030 and carbon neutrality by 2060 (by adopting more vigorous policies/measures)
- **Green Deals carbon-free electricity goes mainstream:** (1) S&P Global Clean Energy index up 37% (in last 2 years), (2) EU stimulus package set aside 25% for clean energy technologies, (3) Biden administration proposed a carbon-free power sector by 2035
- **Big banks make climate commitments:** To reduce carbon intensity of entire portfolios over time
- Financial Institutions and shipping decarbonization: Poseidon Principles finance initiative to decarbonize the maritime sector (\$ 140 billion in loans - ~ 30% of global ship finance portfolio) (SOURCE: Laurie Stone/RMI/Energy Post – Jan 4, 2021)

Top Clean Energy Developments of 2020 (Continued)

- **Green H2 taking off:** Coalition of global companies to scale up and increase green H2 production 50-fold in next 6 years (decarbonize steel industry)
- US rejoins Paris Agreement: many states/local ballot measures passed
- Bans on gas vehicles are growing France/Canada/U.K. and dozen others to ban gas vehicles within 2 decades. California has goal to ban IC engine vehicles by 2035
- **Renewed focus on methane emissions:** EU has adopted methane strategy (and major O&G majors have joined)
- Racial justice enters climate activism discussion: Most affected by climate change potentially are poor and marginalized communities

Concluding Remarks

- H₂ will play an important role for future energy needs globally
- CCUS will also play a bigger role in enabling transition to a low carbon economy
- Major challenges to massively scale-up the H₂ economy: government policies and financial incentives/subsidies; global cooperation; buildup of infrastructure and commercial markets/hubs; technology challenges – transportation, potential use of existing gas pipeline networks, blending H₂, and decarbonizing major industry sectors – steel, cement etc.
- Industrial-scale production of low-carbon H₂ possible with today's technology with ability for substantial near-term emission reductions
- O&G industry with its unique skills, resources and experience can play a major role in this energy mix transition