Comparative Summary of Conventional O&G Injectors, CO₂ EOR and CO₂ Storage Injectors

SPE Denver Webinar – June 17, 2020, 12:00 to 1:00 pm (MST)

Talib Syed, P.E.

www.talibsyed-assoc.com

Acknowledgements: IEAGHG Technical Report "Well Engineering and Injection Regularity in CO2 Storage Wells", 2018/08, November 2018 – <u>www.ieaghg.org</u>

Co-authors – Ronald Sweatman (late) and Glen Benge

IEAGHG Managers – James Craig and Lydia Rycroft

Outline of Presentation

- Increasing Role of CO₂ for Enhanced Oil Recovery (EOR) and Geologic Storage (GS) applications
 - Climate change and reduction in greenhouse gas (GHG) emissions
- Key Comparative Factors O&G Injectors, CO₂ EOR and CO₂ Storage Injectors
 - High Injection/Operating/Reservoir Pressure Management
 - CO₂ Corrosion
 - Well Design & Construction
 - Well Integrity (vs Wellbore Integrity Terminology)
 - Material Selection
 - Plugging & Abandonment
 - Regulatory Class II versus Class VI Wells
- Summary

PROJECTED CO₂, EOR OPERATIONS, AND CO₂ SOURCES: 2020

Source: Advanced Resources International Inc. based on OGJ EOR/Heavy Oil Survey 2014 and other sources

PROJECTED CO₂-EOR PRODUCTION BY REGION

Source: Advanced Resources International Inc. adjustment to OGJ EOR/Heavy Oil Survey 2014

Figure 1 – The CCS Process USDOE "Carbon Utilization and Storage Atlas", 2012

SPE Denver Webinar_June 17, 2020_Talib_TSA

Global CCS projects

	CO2 CAPTURED/ YEAR	STARTING DATE (OPERATION)	STATUS OF THE PROJEC	PARTICIPANTS T	IOGP MEMBERS
capture methane portation via icated ae	1 Mtpa	2015	Operational	Shell	Shell

CCS projects in **NORTH AMERICA**

- 1. Quest*
- 2. Boundary Dam CCS
- 3. Alberta Carbon Trunk Line (ACTL) with North West Redwater Partnership's Sturgeon Refinery CO2Stream
- 4. Lehigh's Edmonton plant
- 5. Alberta Carbon Trunk Line (ACTL) with Agrium CO2Stream
- 6. Illinois Industrial Carbon Capture and Storage (ICCS)
- 7. Petra Nova
- 8. Coffeyville Gasification Plant
- 9. Air Products Steam Methane Reformer
- 10.Lost Cabin Gas Plant*
- **11.Century Plant**
- 12.Great Plains Synfuels Plant and Weyburn-Midale

1	Canada <i>Alberta</i>	Quest	Industrial capture, EOR	Hydrogen production for oil refining	Retrofitted CO2 capture facility to steam methane reformers, transportation via pipeline to a dedicated geological storage	1 Mtpa	2015	Operational	Shell	Shell
2	Canada Saskatchew an	Boundary Dam CCS	Power and capture (post- combustion), EOR	Power generation	It combines post-combustion CCS with coal-fired power generation, some captured CO2 goes for EOR use in the Weyburn oil unit, a portion of the CO2 is stored permanently under the ground at the Aquistore project.	1 Mtpa	2014	Operational	SaskPower	
3	Canada <i>Alberta</i>	Alberta Carbon Trunk Line (ACTL) with North West Redwater Partnership's Sturgeon Refinery CO2 Stream	Industrial capture, EOR	Oil refining	Carbon dioxide captured from Agrium's Redwater fertiliser plant and the North West Redwater Partnership's Sturgeon refinery. CO2 recovered from the fertiliser plant's emission streams put through inlet cooling, separation, compression, dehydration and refrigeration to produce liquefied CO2.The project plans to transport CO2 from a number of sources in the future coming from Alberta's Industrial Heartland.	1.2-1.4 Mtpa	2020	Under construction	Enhance Energy Inc. (and - North West Redwater Partnership)	
4	Canada Alberta	Lehigh's Edmonton plant	Industrial capture	Cement industry	Capture the majority of the carbon dioxide (CO2) from the flue gas of Lehigh's Edmonton, Alberta cement plant	Estimated 600,000 tonnes annually		Feasibility study	Lehigh Cement and the International CCS Knowledge Centre	
5	Canada <i>Alberta</i>	Alberta Carbon Trunk Line (ACTL) with Agrium CO2 Stream	Industrial capture, EOR	Fertilizer production	At the NWR refinery, CO2 will be captured within the gasification hydrogen supply unit, which will use unconverted petroleum bottoms (asphaltene) as feedstock to create synthesis	0.3-06 Mta	2020	Under construction	Enhance Energy Inc.	

gas (syngas).

NO. LOCATION	PROJECT NAME	PROJECT TYPE	INDUSTRY	DESCRIPTION
--------------	--------------	--------------	----------	-------------

PROJECT NAME	PROJECT TYPE	INDUSTRY	DESCRIPTION	CO2 CAPTURED/ YEAR	STARTING DATE (OPERATION)	STATUS OF THE PROJECT	PARTICIPANTS	IOGP MEMBERS INVOLVED
Illinois Industrial Carbon Capture and Storage (ICCS)	Industrial capture	Ethanol production	CO2 captured from the fermentation process used to produce ethanol at an industrial corn processing complex in Decatur, Illinois, Transportation to a dedicated geological storage site	1 Mtpa	2017	Operational	Administered by the U.S. Department of Energy's Office of Fossil Energy a managed by the National Energy Technology Laboratory and by a cost share agreement with the Archer Daniels Midland Company, University of Illinois through the Illinois State Geological Survey, Schlumberger Carbon Services, and Richland Community College	nd
Petra Nova	Power and capture (post- combustion), EOR	Power generation	Texas power plant retroffitted with post- combustion CO2 capture facility, transportation near Houston for EOR	1.4 Mtpa	2017	Operational	NRG Energy and JX Nipp Oil	on
Coffeyville Gasification Plant	Industrial capture, fertiliser production, EOR	Fertilizer production	Fertilizer plant in Coffeyville retrofitted with CO2 compression and dehydrataion facilities, oil delivery to the North Burbank oil unit in Osage county, Ohklaoma for EOR	1 Mtpa	2013	Operational	Coffeyville Resources Nitrogen Fertilizers, LLC, Chapparal Energy and Blue Source	
Air Products Steam Methane Reformer	Industrial capture, EOR	Hydrogen production for oil refinery	Airproducts retrofitted of steam methane reformer within a refinery at Port Arthur, Texas,transportation to oil field in Texas for EOR	1 Mtpa	2013	Operational	Air Products, Covestro	
Lost Cabin Gas Plant	Industrial capture, EOR	Natural gas processing	Gas plantg in Wyoming supplies CO2 to compression facolity, transport and delivery via pipeline to the Bell Creek oil firld in Montana for EOR	Approx. 1 Mtpa	2013	Operational	ConocoPhillips	ConocoPhillips
Century Plant	Industrial capture, EOR	Natural gas processing	Natural gas treatment facility in Texas, transportation via pipeline for EOR	8.4 Mtpa	2010	Operational	Occidental Petroleum	
Great Plains Synfuels Plant and Weyburn- Midale	Industrial capture (pre- combustion), EOR	Synthetic natural gas	The plant in North Dakota produces CO2 as part of a coal gasification process, transportation to the Wyburn	3 Mtpa	2000	Operational	Dakota Gasification Comp	bany

and Midale oil units for EOR

USA

USA

8 USA

9 USA

10 USA

11 USA

12 USA

Texas

North

Dakota

Texas

Wyoming

Texas

Kansas

7

Illinois

6

CCS projects in **NORTH AMERICA**

- 1. Quest*
- 2. Boundary Dam CCS
- 3. Alberta Carbon Trunk Line (ACTL) with North West Redwater Partnership's Sturgeon Refinery CO2Stream
- 4. Lehigh's Edmonton plant
- 5. Alberta Carbon Trunk Line (ACTL) with Agrium CO2Stream
- 6. Illinois Industrial Carbon Capture and Storage (ICCS)
- 7. Petra Nova
- 8. Coffeyville Gasification Plant
- 9. Air Products Steam Methane Reformer
- 10.Lost Cabin Gas Plant*
- **11.Century Plant**
- **12.Great Plains Synfuels Plant** and Weyburn-Midale

	Produ	cers	
0 3 4 5	2		
		220 38-10-3 3-10-3 14 2-7-10-17 2-15-17	16

CCS projects in	
NORTH AMERICA	

13.Shute Creek Gas Processing	
Plant*	

- **14.Enid Fertilizer**
- 15.Terrell Natural Gas Processing Plant (formerly Del Verde)

16.Wabash CO2 Sequestration

- 17.Lake Charles Methanol
- 18.Dry Fork Integrated Commercial CCS
- 19.CarbonSAFE Illinois -Macon County
- 20.Project Tundra
- 21.Integrated Mid-Continent Stacked Carbon Storage Hub*
- 22.Oxyand White Energy Ethanol EOR Facility
- 23. Oxyand Carbon Engineering Direct Air Capture and Eor Facility
- 24.Project ECO2S: Early CO2 Storage Complex in Kemper County

1	NO	. Location	PROJECT NAME	PROJECT TYPE	INDUSTRY	DESCRIPTION	CO2 CAPTURED/ YEAR	, STARTING DATE (OPERATION)	STATUS OF THE PROJECT	PARTICIPANTS	IOGP MEMBERS
	13	USA Wyoming	Shute Creek Gas Processing Plant	Industrial capture, EOR	Natural gas processing	Gas treating facility in Wyoming, some CO2 injected for sequestration/disposal, some for EOR	7 Mtpa	1986	Operational	ExxonMobil	ExxonMobil
	14	USA Oklahoma	Enid Fertilizer	Industrial capture, fertilizer production, EOR	Fertilizer production	CO2 captured from the manufacture of fertiliser, transportation for use in EOR at the Golden Trend oilfield and the Sko-Vel-Tum oilfield, south of Oklahoma City	0.7 Mtpa	1982	Operational	Koch Nitrogen Company	
4	15	USA <i>Texas</i>	Terrell Natural Gas Processing Plant (formely Del Verde)	Industrial capture, EOR	Natural gas processing	CO2 capture at natural gas processing plant, CO2 transportation via Valverde pipeline to McCamey, Texas, and the Canyon Reef Carriers CRC pipeline and the Pecos pipeline, CO2 for EOR	Approx 0.5 Mtpa	1972	Operational	Blue Source and others	
	16	USA Indiana	Wabash CO2 Sequestr ation	Industrial capture	Fertilizer production	Gasification plant in Indiana to be converted into an anhydrous ammonia production plant and CCS plant, dedicated geological storage in the Wabash carbonSAFE CO2 storage hub	1.5-1.75 Mtpa	2022	Advance developme nt	WABASH Valley Resources (WVR)	
	17	USA Louisiana	Lake Charles Methan ol	Industrial capture, EOR	Chemical production	Gasification facility in Lousiana capturing from synthetic gas syngas to make methanol and other products, captured CO2 to be used for EOR in Texas	Approx 4 Mtpa	2024	Advance developme nt	Leucadia Energy	
	18	USA Wyoming	Dry Fork Integrated Commercial CCS	Power and Capture (post- compbustion), EOR	Power generation	Dry Fork coal-fired power station in Wyoming, targeting adjacent geological storage formations currently under study. EOR under consideration	3 Mtpa	2025	Advance developme nt	The Basin Electric Power Cooperative	
	19	USA Illinois	CarbonSAFE Illinois -Macon County	Power and industrial capture (post- combustion), EOR	Power genration and ethanol production	CCS integration of a compression and dehydration facilities to an ethanol plant, transportation and injection in a dedicated geological storage	2-5 Mtpa	2025	Advance developme nt	Carbon Storage Assurance Facility Enterprise (CarbonSAFE) of the U.S. Department of Energy National Energy Technology Laboratory (DOE- NETL)	<u> </u>

Association of Oil & Gas Producers	NO	LOCATION	PROJECT NAME	PROJECT TYPE	INDUSTRY	DESCRIPTION	CO2 CAPTURED/ YEAR	STARTING DATE (OPERATION)	STATUS OF THE PROJECT	PARTICIPANTS	IOGP MEMBERS
	20	USA North Dakota	Project Tundra	Power and capture (post-combustion), EOR	Power generation	Retrofit CO2 capture plant to the MIlton R. Young coal fire power station in North Dakota with a dedicated storage site. EOR under study	3.1-3.6 Mtpa	2025-2026	Advance development	Minnkota Power Cooperative	9
	21	USA Nebraska, Kansas	Integrated Mid- Continent Stacked Carbon Storage Hub	Ethanol production, power generation and/or refinery, EOR	Ethanol production, power generation and/or refinery	CO2 collection from ethanol plants, power plants and refineries with integrated storage in Kansas and Nebraska	Approx 2 Mtpa	2025-2035	Advance development	The team is led by Battelle Memorial Institute and includes: Archer Daniels Midland Company (ADM), the Kansas Geologic Survey (KGS), the Energy and Environmental Research	Schlumberger y
CCS projects in NORTH AMERICA										Center (EERC) at the University of North Dakota, Schlumberger, the Conservation and Survey Division (CSD) at the	
Plant*										University of Nebraska- Lincoln (UNL) and others	
14.Enid Fertilizer 15.Terrell Natural Gas Processing Plant (formerly Del Verde)	22	USA Texas	Oxy and White Energy Ethanol EOR Facility	Industrial capture, EOR	Ethanol production	CO2 capture from two ethanol facilities in Hereford and Plainview,	0.6-0.7 Mtpa	2021	Early development	Occidental Petroleum Corporation and White Energy	
16.Wabash CO2 Sequestration 17.Lake Charles Methanol						Texas. The captured CO2 will be stored via					
18.Dry Fork Integrated Commercial	22		Ovv and	Direct air capture		fields in Premian basin	1 Mtna	2025	Farly	Ovu Low Carbon Ventures	
19.CarbonSAFE Illinois -Macon County	23	Texas	Carbon Engineering	EOR	N/A	Occidental oil field in the Permian Basin, and used	Πνιμα	2023	development	and Carbon Engineering Lto	ł
20.Project Tundra			Capture and								
Stacked Carbon Storage Hub*	24	USA Mississippi	Project ECO2S: Early CO2	Under evaluation	N/A	Regional CO2 storage hub near the Keper County	3 Mtpa	2026	Early development	In identification (capture) - I believe information on companies involved on the	
22. Oxyand White Energy Ethanol EOR Facility			Complex in Kemper Countv			from power and industrial sources				storage is also available. (http://www.searchanddiscov	4
23.Oxyand Carbon Engineering Direct Air Capture and Eor Facility										ery.com/ documents/2018/80638hnott vange- telleen/ndx_hnottavange-	ta
24.Project ECO2S: Early CO2 Storage Complex in Kemper County										telleen. pdf) Project ECO2S a DOE-supported CarbonSAFE program,	, 10

Comparative Summary of O&G, CO₂ EOR and CO₂ Storage Wells

Selected Key Comparative Factors:

- High Injection/Operating/Reservoir Pressure Management
- CO₂ Corrosion
- Well Design & Construction (Drilling/Workovers)
- Well Integrity
- Material Selection & Specifications
- Injectivity & Regularity
- Plugging & Abandonment (P&A)
- Regulatory Class II versus Class VI Wells

High Injection/Operating/Reservoir Pressure Management

- CO₂ transported and injected at a high pressure (above 1,100 psi)
 - danger from its high coefficient of thermal expansion
- Loss of well control (LWC)/blowouts during workovers is significant concern from CO₂ phase behavior and high pressure
 - Failures from CO_2 related corrosion of well materials can cause LWC
- High injection pressures with low injection fluid temperatures can induce hydraulic fracturing – geo-mechanical models to determine in-situ stresses and fault activation hazard
- Locate CO₂ storage wells far away from faults

- Wet CO₂ corrodes well tubular and cement. Changes near wellbore reservoir properties
- Low corrosion risk when
 injected stream is dry (CO₂
 purity > 95%) and in
 supercritical stage
- Long-term stability of wellbore materials is complex.
 Incorporate material and reservoir properties into well design/completion programs
- Equip older wells/ wells converted to CO₂ service with corrosion-resistant tubular

CO₂ Phase Behavior (Oilfield Review September 2015)

Well Design & Construction (Drilling/Workovers)

- Design/well construction of water injector and CO₂ EOR injector is similar (except wellhead). Also, CO₂ EOR and CO₂ storage well designs are similar, with latter more stringent in some cases (CO₂ -resistant tubular and cements)
- CO₂ EOR wells either drilled as new wells or re-complete producer or injector in existing fields
- Major differences in remedial workovers between waterflood and a CO₂ flood. With large CO₂ EOR operations, may need a workover rig on location for routine maintenance – also to deploy a rig for LWC incidents
- CO₂ stored for a long period (decades). Specific requirements for well design and monitoring and abandonment (MMV – monitoring measurement and verification) depending on jurisdiction
- Drilling in environments HPHT, SAGD, deepwater, ERD, shales, arctic, salt zone and CO₂ injection results in complex loading conditions on casing/tubular/cements etc. Casing design software such as WELLCAT[™], DrillPlan[™]

Well Integrity

- Large scale CO₂ EOR operations (SACROC and Wasson Field) indicate no major concerns with life cycle well integrity management
- Impacts of CO₂ corrosion on well tubular and cements handled with appropriate selection of materials of construction (MOC)
- Complex loads/stresses on casing/tubing and cements from CO₂ injection handled with appropriate software
- Higher injection rates in CO₂ storage wells can impact wells and near wellbore structures
- Proper maintenance of CO₂ injection wells necessary well integrity surveys, improved BOPE maintenance, crew training and awareness, contingency/emergency response
- Minimize thermal cycling (on-off injection and CO₂ supply disruption) to avoid cement debonding and injectivity effects
- Gulf of Mexico, North Sea and Alberta studies indicate higher well integrity problems with cased wells compared to drilled and abandoned wells, and injection wells more prone to leakage than production wells

Well Integrity vs. Wellbore Integrity

- Well integrity differs from Wellbore integrity (Borehole instability) open hole interval that does not retain its gauge and/or structural integrity
- Types of borehole instabilities:
 - Hole closure/narrowing;
 - Hole enlargement/washouts
 - Fracturing
 - Collapse
- Borehole instability prevention:
 - Maintain proper mud-weight; borehole fluid compatible with drilled formation
 - Use proper hydraulics to control equivalent circulating density (ECD)
 - Select proper hole trajectory

Injectors - Well Integrity Challenges

- Injectors 2 to 3 times more likely to leak than producer wells
 - Thermal induced higher loads
 - Injectors get less focus
- Injected fluid charging a non-target zone:
 - Potential for kicks drilling offsets
 - Narrow mud windows; difficult reaching TD
- Change of well status/application
- CO₂ EOR/CO₂ Storage, acid gas injection wells:
 - Risk of CO₂ blowout
 - Corrosion resistant tubular and cements
 - Long-term safe storage and abandonment

2 7/8" tbg @ 6533', 5 ½" x 2 7/8" pkr @ 5971', Perfs 5892'-6284'

ADM CCS # 2 Class VI-GS Well, Decatur, Illinois, U.S.A.

Material Selection & Specifications

- Material selection for CO₂ injection wells depends on high strength combined with high corrosion resistance
- Run chemical analysis of reservoir fluids; also temperature and pressure profiles and stresses on tubulars
- Consider contact with wet CO₂ especially in deeper sections of well
- Consider performance at low temperatures (brittle materials may not stop CO₂ leakage), and O₂ – related impacts
- Use appropriate corrosion resistant metallurgy
- Cementing is critical for mechanical performance and life cycle well integrity.
- Use appropriate cements/specialty cements for zonal isolation and well integrity.
- Use current industry best practices for successful cement design, execution and evaluation

Injectivity and Regularity

- Injectivity and injection regularity critical for success of a CCS storage project (storage of millions of tons of CO₂ in a 50-year time frame)
- For CO₂ EOR objective is to maximize oil recovery, while for storage wells is to maximize injection volumes/storage capacity with minimum number of wells
- Large scale CO₂ storage requires good/sufficient capacity reservoirs with good petrophysical properties (dissipate pressure buildup and avoid interference with adjacent O&G operations, if present)
- Injection can alter mechanical rock properties by inducing chemical reactions
- CO₂ EOR project economics greatly impacted with injectivity loss and corresponding reservoir pressure loss
- Injectivity loss factors: wettability, trapping, salt/halite precipitation, increased scaling, paraffin and asphaltene precipitation. Additional factors: fines migration, borehole deformation, fault intersection, facies variation and shale swelling

Typical Well Plugging & Abandonment

- Quality of a P&A evaluated by type of plugging material and plug placement technique
- Plugging materials: cements, formation, grouts, thermosetting, gels, metals (bismuth/thermite)
- Placement techniques: Balanced plug, Dump-bailer, Two-plug and Jet grouting
- Successful P&A protects environment, with downhole integrity, regulatory compliance

Source: Randhol and Carlsen/SINTEF, 2001

R	equirements	Class II	Class VI
•	Permit Required	Yes, except for existing EOR wells authorized by rule	Yes, cannot be authorized by rule
•	Seismicity Information	None	Determine that if seismic sources are identified, the seismicity would not interfere with containment
•	Area of Review (AOR) Corrective Action	For new wells, a ¼ fixed radius or radius of endangerment. CA plan required for improperly P&A'd wells	Designates larger AOR, based on CO2 pressure front and plume extent. AOR review every 5 years and CA on all wells within AOR if required
•	Financial Responsibility (bond, letter of credit etc	Financial assurance to properly P&A well(s)	FA to cover CA, injection, P&A, post-injection site care, and emergency/remedial response

Requirements

Class II

- Well Construction •
- Logging/Sampling/ • Testing prior to Operation
- Mechanical Integrity (MIT) prior to operation

Casing and cementing to prevent

flow into or between USDWs

Injection pressure not to exceed permit max WHIP and prevent Requirements flow into USDWs

MIT Testing

Operating

۲

Once every 4-5 years (Internal) External – logs/cement records etc.

Class VI

Class II plus use of materials of construction (tubular/cements) for life cycle well integrity

Class II plus verify formation physical and chemical characteristics

Class II plus max surface WHIP < 90% of formation fracture pressure. Continuous monitoring of pressures/CO2 stream etc.

Specific standards for demonstrating MIT Including annual testing and pressure monitoring to detect fluid movement

Requirements		Class II	Class VI			
•	Testing/Monitoring	Annual fluid chemistry as per permit. Injection pressure/rates and volumes as per permit	Class II plus verifying compliance with permit. Monitor CO ₂ plume and pressure front during injection and post-injection and groundwater quality during injection			
•	Well Plugging and Abandonment	P&A'd as per industry standards	Class II plus more specific plugging and site-closure requirements to prevent CO ₂ leakage post-injection			
•	Reporting and Recordkeeping	Annually. Report non-compliance	Semi-Annually. Report non-compliance within 24 hrs. Class II plus more specific on injection fluid stream and pressure data. Retain records for project life plus 10 years post- closure and monitoring data for 10 years after collection			

Requirements Class II

- Post-Injection None
- Emergency and None Remedial Response

Permitting Period For life of well or life of project Each permit reviewed every 5 years

• Area Permits Generally allowed

Class VI

Continue monitoring of CO₂ plume and pressure front (may be up to 50 years)

Submit and Emergency and Remedial Response Plan. Notification and implementation in event of CO₂ release

Lifetime of facility plus 50-year post-injection period Each permit must be reviewed at least once every 5 years

Not allowed

45Q Carbon Storage Tax Credit

- Section 45Q establishes tax credits for CO2 storage through both EOR and geologic sequestration (26 U.S.C. §45Q)
- For EOR, only CO2 used as tertiary injectant and remains in reservoir qualifies for tax credit not CO2 recaptured or recycled. Tax credit is currently @ \$35/ton
- Tax credit is \$ 50/ton for sequestered CO2
- Taxpayer must claim credit over 12-year period after operations begin (facility must start operations or begin construction before 2024 or by January 1,2025 proposed)
- Tax credit to reduce federal tax revenue by estimated \$ 2.3 billion (FY 2020-2029 period)
- As of May 2019, stored carbon oxide*claimed for 45Q tax credit since 2011 is ~ 63 million tons

Summary

- Imperatives for Success in CO₂ Injection Operations: O&G industry has the technology, knowledge, experience:
 - To safely handle and manage CO₂ operations; to avoid potential catastrophic impacts to safety, environment, reputation, economic loss; and maintain Social License to operate
 - Original well design and conversions must meet critical casing and cementing requirements with appropriate materials of construction (tubular and cements)
 - Implement best practices/sound engineering for well design/construction/injection
 - Implement appropriate well integrity testing and monitoring procedures and compliance with stringent regulatory requirements (will also reduce risks from legacy wellbores)