

Enhanced Oil Recovery (EOR) for Unconventional Reservoirs: The Next Big Thing?

B. Todd Hoffman

Montana Tech

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Thank You!!!

2

This year the Denver Chapter dispersed \$50,000 in scholarship money for the 2019-2020 school year. This amount will be shared between 33 students from the Colorado School of Mines, Montana Tech, New Mexico Tech, University of North Dakota, and University of Wyoming.

Outline

- Unconventional Reservoirs (UR)
- Enhanced Oil Recovery in UR
 - -History (2008 today)
 - **–Operational Issue**
 - -Recovery Mechanisms

Idealized diagram of major sedimentary systems

Unconventional Reservoirs – What?

5

also known as (aka)

- -Shale Oil / Shale Gas
- Resource Reservoirs
- -Source Rock Reservoirs
- Light Tight Oil (LTO)

Characteristics

- Source rock & reservoir rock are the same or nearby
- Extremely low permeability
- Requires long horizontal wells and multi-stage hydraulic fracturing

Unconventional Reservoirs – Where?

Unconventional Oil Reservoirs

North America Formations

SPE DISTINGUISHE

- Bakken
- Eagle Ford
- Niobrara/Codell
- Utica
- Montney
- Permian
- STACK/SCOOP
- Duvernay
- others ...

Elm Coulee Bakken (Montana)

 R. Findley & Lyco Energy drilled first unconventional oil wells in Elm Coulee in late 1999 - fractured in 2000

PE DISTINGUISHE

- Numerous operators drilling wells in Elm Coulee in early 2000's
- By 2005, extensive development

Bakken – Expanded Development

 In late 2000's, development expanded to North Dakota side of the Bakken

SPE DISTINGUISHE LECTURER

Eagle Ford - Development

• Eagle Ford development exploded in early 2010's

SPE DISTINGUISHED LECTURER

Unconventional Oil Success - US

80% of increased
 US oil rate is from
 unconventional oil
 reservoirs

PE DISTINGUISHED

11

Billions of barrels of oil resource in unconventional reservoirs

Unconventional Oil Opportunities

SPE DISTINGUISHED LECTURER^{**}

12

Need for EOR in unconventionals is apparent

Options for EOR in Unconventionals

13

<u>Gas</u>

- CO₂
 - Source may be issue
- Rich natural gas
 - 60% C₁, 40% C₂+
 - Behaves similar to CO₂
- Lean natural gas
 - 90+% C₁, <10% C₂+
 - Vapor extraction
- Miscible / Immiscible

Water / Surfactants

- Injectivity doesn't appear to be a concern
- Matrix imbibition
- Surfactants may help
 - -Change wettability
 - -Find low cost option?
- Low salinity

Initial Simulation Study - Bakken

Pa I_c P I_n P P I_n P P I_n P

Grad student at Montana Tech
Summer intern at Continental (Shoaib, 2009) SPE 123176

- 4 Sections (2 mi. x 2 mi.)
- 8 layers including upper shale and middle member
- Multiple CO₂ injection cases

- Simple model
- Indicates added recovery

Early Pilots - CO₂ Injectivity - Bakken

- > 2 Pilot tests (one in MT and one in ND)
- Injection rates / pressures
 - ~1500 Mscf/day @ 2000-3000 psi
 - 30-45 days inj., 10-20 days soak, ~ 3 months prod.

LECTURER

EOR in UR - Research

- Laboratory / Experiments
 - Gas Injection
 - Surfactants
- Analytical Analysis

Brine v. surfactant

Pressure

LECTURER

16

Nguyen et al, 2014

- Reservoir Modeling / Flow Simulation
 - Generally, models showed success
 - Capturing true EOR response?

EOR Pilots in the Bakken

SPE DISTINGUISHED

Continuous Water Injection – Bakken Pilot

Continuous Natural Gas Injection - Pilot

Injection rates

~1700 Mscf/day for 2 months

Most encouraging of Bakken pilots

All wells have increased oil production (2 wells complicated by frac hits)

Also looked at offset wells North and South of injection well

Injection Pilot - Flow Simulation Model

Injection Pilot - Prediction Cases

- Water vs. Natural Gas
- Injection Rate Sensitivity
- Cycle Change Frequency

Huff-n-Puff :: ~20% better than primary

Continuous :: ~20% worse than primary

SPE 190221

PE DISTINGUISHE LECTURER

EOR Pilot Tests - Eagle Ford

SPE DISTINGUISHED LECTURER[®]

Eagle Ford - Huff-n-Puff EOR

- Reported in investor relations presentation
- But no data presented

PE DISTINGUISHE LECTURER

- Started at end of 2012
- Lean gas Inj. (90-95% C₁)
- 3 cycles in 2013

24

Multi-Well - Huff-n-Puff EOR

- ~ $\frac{1}{2}$ wells injecting (4/8 in Pilot B, 6/14 in Pilot C)
- Increase in oil production is evident

Estimated Primary Decline

Eagle Ford Huff-n-Puff Pilot D: 4 Wells

 After 3 years of injection, recovery is more than 30% greater than primary

- 4 isolated wells
 injecting/producing in all
- Cleanest indication of improved recovery

PE DISTINGUISHE Lecturer

Eagle Ford Huff-n-Puff Pilot: Predictions

- Predicted out for 20 years
- Similar to reported expected recoveries (1.3x - 1.7x)

- Predictions are based on extrapolating decline curves
- Inject 2 months; produce 2 mo.

PE DISTINGUISHE Lecturer

Eagle Ford Huff-n-Puff Pilot: Economics

<u>Inputs</u>

- CapEx: \$1 million/well
 - compressors, flowlines, workovers, etc.
- Injection rate: 2 million scf/day (\$2.50/Mscf)
 - 6 month fill up time
 - 20% make up gas during injection time
- OpEx: 10% of injected gas compressor fuel
- 20 year predictions Discount rate: 15% <u>Results</u>

Oil Price	\$35	\$50	\$65
NPV	-\$2,600,000	\$400,000	\$3,400,000
IRR	%	17.7 %	33.6 %
Payback	yrs	2.3 yrs	1.6 yrs

LECTURER

27

<u>Comments</u>

- Marginally economic
- More than half of the cost is gas fill up
- Efficiency gains should be realized over time

Eagle Ford Summary

- There are 200+ wells with Huff-n-puff gas injection
- At least 5 companies have injected in EF, and many more are planning pilots
- Early indications look promising, but issues? ...

Future pilot floods need to focus on three things:

Conformance Conformance Conformance

Keeps pressure from building up
 Loss of gas is costly

Conformance Control – Bakken

Conformance Control – Eagle Ford

Importance of Primary Completion

- 1. Lots of surface area (10-100 million ft²) close to wellbore
- 2. Not intersecting with offset wells
- Better for primary, too

SPE DISTINGUISHED

Other Operational Considerations

- Compressors → Huge, expensive and delayed delivery
- Other equipment (wellheads, packers, tubing, etc)
- Access to gas / type of gas injected
- Land Issues (royalties, offsets, partners)
- Continuous Injection options \rightarrow

Huff-n-Puff Gas Injection

Proposed Mechanisms

- Oil Swelling
- Secondary Solution Gas Drive
- Viscosity Reduction
- Vaporization
- Pressure Support
- Injection Induced Fracturing
- Wettability Alterations
- Others

SPE 195223

Conceptual Model

- During injection, gas fill fractures
- Pressure increases
- Gas interacts with reservoir liquids
 - Dissolution, Vaporization
- Fracture surface area is limiting factor

Recovery Mechanisms

- Gas injection increases liquid production for all fluid types
- Black oils have a larger incremental

Urtec2019-147

- Oil Swelling most important for low GOR fluids
- Vaporization most important for high GOR fluids

LECTURER

Conclusions

- Potential is Enormous for EOR in Unconventionals

 Huge volumes in place; Low recovery factor
- Natural gas huff-n-puff works wells in Eagle Ford
 Large scale field development is occurring
- Other basins still in testing period – e.g Permian, Bakken, SCOOP, Niobrara ...
- Significant work to be done
 - Lab, modeling, and field trials

Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation Visit: spe.org/dl/contest

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl

Questions/Comments

39

Thank you!

Contact information: Todd Hoffman thoffman@mtech.edu

SPE DL Tour - Denver